A case of multiple immune toxicities from Ipilimumab and pembrolizumab treatment

Malik Asif Humayun,1 Ruth Poole2

1Royal Bournemouth Hospital, Bournemouth, 2Poole Hospital, NHS Foundation Trust, Poole; UK

Dear Sir,

Monoclonal antibodies have revolutionized the management of complex and challenging human diseases such as malignancies as well as haematological, rheumatologic and other autoimmune conditions over the last three decades.1 At the same time, they are associated with a significant degree of immune-mediated disorders, and endocrinopathies are no exception.

Ipilimumab is an immune modulation biological agent which acts on anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and is licensed for the treatment of metastatic melanomas.1 Pembrolizumab is a programmed death receptor (PD 1) blocking agent and is indicated for the treatment of patients with unresectable or metastatic melanoma and disease progression following ipilimumab and if BRAF gene mutation (the gene that makes a protein called B-Raf which is serine/threonine-specific protein kinase) is positive.2,3 Pituitary dysfunction is a well-recognised side effect of ipilimumab and is also very occasionally seen (0.5%) with pembrolizumab.3,4 The incidence of hypophysitis induced by CTLA-4 mAbs is reported to be 0-17%.1 The exact mechanism by which these therapies cause hypophysitis remains unknown but it seems to be immune in nature.1

Patients who develop hypophysitis usually present with subacute symptoms including headaches, visual symptoms, lethargy, weight gain and a general feeling of unwellness. There is no specific timescale after starting CTLA-4 mAb treatment at which patients will develop hypophysitis.5 There does not appear to be any specific hormone axis affected more than others. Diffuse pituitary enlargement on MRI is the most frequent radiological finding.

High-dose steroids and other hormone replacements improve outcomes and various reports have shown a favourable outcome in terms of clinical, biochemical and radiographic resolution of this condition without affecting the antitumour activity of these agents.6 The majority of clinicians have used intravenous steroids like dexamethasone but some centers have reported successful treatment with oral prednisone.7 Re-treatment with the same CTLA-4 mAb seems to be safe whenever indicated.1

Through this letter we report the case of a previously fit and healthy 55-year old man who was referred by his GP with an asymptomatic skin lesion on the lower back which had been growing in size for about six months. The rest of his past medical history was insignificant and he did not have any family history of diabetes or autoimmune conditions. The biopsy of the skin lesion confirmed the diagnosis of malignant melanoma which was BRAF positive. At the time of diagnosis he had metastatic disease in his inguinal lymph nodes and a staging CT scan revealed subcutaneous pelvic lymphadenopathy with possible
low external iliac lymph node involvement. No meta-
static disease was identified elsewhere; however, a
PET scan, which was performed six months after his
diagnosis, confirmed widespread metastases invol-
v ing bone, lung, nodes and liver. At that time, he was
treated with first-line palliative chemotherapy with
dacarbazine. He achieved a favourable initial partial
response to this treatment based on the repeat CT
scan which confirmed healing of bone disease and
reduction of size of the lung nodule and of that of
the left inguinal lymph node group. The liver lesions
were no longer visible.

A repeat CT scan after the completion of his first-
line chemotherapy treatment confirmed some disease
activity in the inguinal region, hence he was started on
the second-line treatment with ipilimumab. However,
after four cycles over two weeks of ipilimumab treat-
ment he presented with fatigue and blurring of vision
and was feeling generally unwell. A full pituitary
profile at that point confirmed pan-hypopituitarism
(Table 1). He was started on 4 mg of dexamethasone
with intention to treat his hypocortisolism and sup-
press the immune reaction in the pituitary. All his
symptoms, including blurring of vision, improved
rapidly and his dexamethasone dose was reduced to
2mg once daily after one week. His pituitary profile,
which was repeated after four weeks, showed a normal
pituitary function (Table 1). He did not have an MRI
of his pituitary at the time of presentation; however,
an MRI four weeks after his initial clinical presenta-
tion and treatment with dexamethasone showed a
normal appearance of the pituitary. At that point, his
dexamethasone was switched to hydrocortisone with
a view to keeping him on this treatment a little longer,
due to the risk of recurrence of his hypophysitis, and
than gradually weaning him off his steroid treatment.
A repeat CT scan six weeks after the completion of
his ipilimumab treatment confirmed that his disease
had progressed. He embarked on third-line treatment
with pembrolizumab. His disease remained stable on
the repeat CT imaging, but six months after starting
pembrolizumab he developed increasing effusion of
his knee joints. Clinically there was gross synovitis
in both knees. His inflammatory markers were very
high but anti-cyclic citrullinated peptide antibod-
ies and other auto-antibody screens were negative.
There was no evidence of infective arthritis. He was
diagnosed with pembrolizumab-associated immune
arthropathy and was accordingly treated with sys-
temic and intra-articular steroids, which improved his
symptoms significantly. His disease remained stable
on a repeat CT scan which was performed after six
cycles of his pembrolizumab treatment; therefore, it
was decided to continue with this treatment.

After nine cycles of his pembrolizumab treat-
ment he presented to the emergency department with
symptoms of tiredness, polyuria and polydipsia. His
serum glucose was 42 mmol/l, a venous blood gas
showed a pH of 6.93 and his capillary ketone levels
were 6.8 mmol/l. He was treated according to the
hospital diabetic ketoacidosis (DKA) protocol and
made a good recovery. At that point his HBA1c was
93 mmol/mol. He was diagnosed with type 1 diabetes
and commenced on basal bolus insulin. GAD (glutamic
acid decarboxylase) and islet cell antibody levels
were undetectable. His glycaemic control improved
significantly and remained stable after discharge.

He also reported having pain in his right hip and an
X-ray of his hip showed some osteoarthritic changes
but also significant thinning of the cortex. An MRI
of the femur and pelvic area demonstrated a moderate
effusion with surrounding soft tissue oedema and pre-existing degenerative change. There was
no evidence of fracture or metastatic disease and
imaging appearance was more in keeping with bone
marrow inflammation and oedema likely secondary
to osteitis due to immune toxicity of pembrolizumab
treatment. He was given ten cycles of pembrolizumab
treatment in total, after which it was discontinued in
view of the evidence of disease progression and immune toxicities. He also developed a maculopapular rash approximately six weeks after his tenth cycle of pembrolizumab treatment, which was thought to be secondary to his treatment. The rash disappeared without any treatment after two weeks.

Type 1 diabetes mellitus (T1DM), including diabetic ketoacidosis, has been reported in 0.1% of patients across clinical studies with pembrolizumab in approximately 5000 patients. This risk has not been described in the drug literature of pembrolizumab. We have found only one previously published case report of T1DM due to pembrolizumab. The latter patient had positive anti-GAD and ICA, suggesting a possible association of PD-1 inhibitors with autoimmune diabetes. Interestingly, these antibodies were negative in our patient. Our patient presented with acute DKA as a first presentation of diabetes and this favours the possibility of an insulin-deficient state like type 1 diabetes as opposed to type 2 diabetes or latent autoimmune diabetes of adulthood, which has a more gradual onset. The previously cited case presented with T1DM after three doses of pembrolizumab, while our patient presented after the ninth infusion of pembrolizumab. Both these cases presented with DKA as a first manifestation of diabetes. There was no family history of T1DM in either of the cases. Of note, our patient’s insulin requirement did not change after completion of his pembrolizumab treatment (over the three months follow-up period), hence we suspect that unlike several other immune toxicities related to mAbs treatment, diabetes does not seem to resolve spontaneously after termination of the treatment.

Our patient also developed other immune-mediated toxicities, including arthropathy and osteitis. Arthropathy is also a very rare side effect of PD-1 inhibitors and so far only two cases have been reported in the literature. It responded well to the intra-articular and systemic steroid therapy and the patient did not require any further treatment after the end of his pembrolizumab treatment.

It is also of interest that our patient developed several different immune-toxicities secondary to his mAbs treatment for malignant melanoma and all of them resolved spontaneously after cessation of treatment except for his diabetes. Our case also heightens our awareness of complications associated with the clinical use of these agents and may be considered as a prototypical model for future research into the understanding of these immune toxicities.

CONCLUSION

Although not very commonly encountered in the past, hypophysitis and other metabolic and endocrine disorders secondary to the use of monoclonal antibody treatment will be increasingly encountered by the acute medical team, oncologists and endocrinologists.

Hypophysitis and T1DM can develop due to immune toxicities of modern anticancer treatments and, if not promptly diagnosed and properly treated, may be life-threatening due to secondary adrenal insufficiency and DKA, respectively, the key being rapid diagnosis and therapeutic intervention. This can be achieved through a close level of communication between the relevant specialties and patient education.

Patients should be educated and may be provided with a safety card about the symptoms and the likely immune toxicities from their anticancer medication.

Clinicians, especially emergency and acute medical teams, should be vigilant about the clinical features of such potential life-threatening toxicities.

There is also a need to discover new predictive biomarkers of both activity and toxicity of these agents.

REFERENCES

5. Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS, 2013 Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab:

