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ABSTRACT

Parathyroid hormone receptors are present in bone cells and play a crucial role in the main-
tenance of skeletal integrity, bone homeostasis and regulation of calcium and phosphate me-
tabolism. Although the function of these receptors has long being recognized in the cells of the 
osteoblastic lineage regulating directly osteoblast differentiation and function and indirectly 
osteoclastogenesis, recent findings demonstrate their functional presence in osteocytes partici-
pating in the co-ordination of bone remodelling. In this review we focus on the key roles of these 
receptors in osteoblasts and osteocytes, combining what is known and what is new regarding 
these interesting pleiotropic hormone receptors.
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INTRODUCTION 

The osteocyte is one of the three main bone cell 
types, together with bone-forming osteoblasts and 
bone-resorbing osteoclasts, and is by far the most 
common type. During the last decade the role of the 
osteocyte in bone metabolism, as well as in mineral 
homeostasis, has been re-appraised and important 
details concerning certain molecular mechanisms 
involving its function have been elucidated. Osteo-
cytes, which derive from mature osteoblasts, are 

buried within the bone matrix, forming an extensive 
network of communication with internal and external 
bone surfaces. The osteocyte network serves as the 
main mechanosensing apparatus coordinating bone 
modelling and remodelling. This network is constantly 
subjected to various forms of external and internal 
forces. Fluid shear stress in the canalicular fluid is 
sensed by various specialized molecular sensors, 
activates intracellular pathways and transmits regula-
tory signals to surface cells thereby adjusting bone 
adaptation in response to loading.1 These magnificent 
cells are also the major source of various endocrine 
factors that are released into the circulation, such 
as fibroblast growth factor 23 (FGF23)2 and dentin 
matrix acidic phosphoprotein 1 (DMP-1).3 Many fac-
tors, endocrine or paracrine, exert their effects on the 
osteocyte network through various receptors, such as 
those for vitamin D (VDR) and parathyroid hormone 
(PTHR), enabling changes in the endocrine milieu to 
be sensed by the osteocytes. In this short review we 
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summarize the important recent findings concerning 
the role of PTHR in osteocytes and osteoblasts.

PARATHYROID HORMONE AND ITS MEMBRANE 
RECEPTOR (PTHR)

Parathyroid hormone (PTH) is the principal regula-
tor of calcium homeostasis (Ca2+) in the body. Human 
PTH is an 84-amino acid polypeptide that is secreted 
from the parathyroid glands in response to low blood 
Ca2+ levels,4 and possibly in small amounts from the 
brain and the thymus.5 PTH-related protein (PTHrP) 
plays a key role in  regulating the embryonic develop-
ment of the skeleton6 in a paracrine manner, along 
with Indian hedgehog and other morphogenetic signal-
ling proteins, in order to delay the differentiation of 
chondrocytes in the growth plate of developing long 
bones. Separate genes encode for PTH and PTHrp, 
but their mature peptides share significant sequence 
homology within the first 34 amino acids. In addi-
tion, both ligands utilize the same G protein-coupled 
receptor (GPCR),7 while their biological functions are 
distinct.8 The molecules of PTH and PTHrP contain 
extended C-terminal domains. The biological roles 
of these segments remain largely unknown, although 
some functional responses have been identified, such 
as a capacity of fragments of the C-terminal portion 
of PTH to induce pro-apoptotic effects in osteocytes.9

Parathyroid hormone/parathyroid hormone-
related protein receptor 1 

The parathyroid hormone/parathyroid hormone-
related protein receptor (PTH/PTHrP type 1 receptor 
commonly known as PTHR1) belongs to the large 
family of G-protein-coupled receptors and is expressed 
primarily in the bone, the kidney and cartilage, but 
also in other tissues including the vasculature and 
certain developing organs. It is encoded by a 14-exon 
gene located on chromosome 3 and plays a key role 
in the regulation of Ca2+ concentration in blood and 
in endochondral bone formation.10 

PTHR1 couples to several intracellular signalling 
pathways. The nature of the biological response re-
sulting from activation of PTHR1 depends on signal 
identity, magnitude and duration and is coordinated 
by many variables, such as the molecular structure 
of the bound ligand, the type of target cell and the 

homeostatic condition of the body. Activation of 
PTHR1 in different cell types initiates tissue-specific 
biochemical and cellular responses. Activation of 
PTHR1 in osteoblastic cells and chondrocytes modu-
lates the rate of proliferation and apoptosis, as well 
as the production of a variety of signalling factors 
involved in bone and cartilage metabolism.11,12 In 
the kidney, activation of PTHR1 in renal tubular 
cells regulates the expression of proteins involved in 
mineral ion transport.13 In addition, through autocrine 
mechanisms activation of PTHR1 regulates several 
molecular cascades involving mechanisms of receptor 
desensitization,14,15 feedback that controls hormone 
release,16 as well as mechanisms for catabolism and 
removal of the hormone-ligand from the circulation.17 

THE ROLE OF PTHR IN BONE METABOLISM

Activation of intracellular molecular pathways
After ligand coupling, PTHR1 activates four 

different intracellular signalling cascades: a) GαS-
adenylyl cyclise-cAMP-protein kinase A (PKA), 
b) Gαq-phospholipase C (PLC) β-inositol triphos-
phate-cytoplasmic Ca2+-protein kinase C,18 c) Gα12/13-
hospholipase D-transforming protein RhoA19 and d) 
β-arrestin-xtracellular signal-regulated kinase 1/2 
(ERK1/2) (Figure 1).20,21

In the skeleton, PTHR1 is expressed on the sur-
face of osteoblasts and osteocytes.22,23 Activation of 
PTHR1 by the first 34 amino acids of the N-terminal 
of PTH leads to Gas-mediated activation of the ade-
nylyl cyclase/cyclic AMP (cAMP)/protein kinase A 
(PKA) signalling pathway.24 In parallel, Gaq-mediated 
activation of the phospholipase/protein kinase C (PKC) 
signalling cascade is also activated.25

The activation of these pathways is followed by 
gene expression of several growth factors, such as 
IGF-1, IGF-2 and TGF-β, which mediate the effects of 
PTH. IGF-1 is essential for cAMP-mediated transcrip-
tional activation. Although PTH modulates key genes 
controlling bone resorption through the cAMP/PKA 
signalling pathway,26,27 PKC signalling is not required 
for and may even be inhibitory to the osteoanabolic 
actions of PTH. The binding of PTH to PTHR1 also 
translocates β-arrestins to the cell membrane,28 which 
in turn downregulates PTH-induced cAMP activa-
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Figure 1. PTHR1 intracellular signalling. After ligand coupling PTHR1, activates four different intracellular signalling cascades: 
a) GαS-adenylyl cyclise-cAMP-protein kinase A (PKA), b) Gαq-phospholipase C (PLC) β-inositol triphosphate-cytoplasmic Ca2+-
protein kinase C18, c) Gα12/13-phospholipase D-transforming protein RhoA and d) β-arrestin-extracellular signal-regulated kinase 1/2 
(ERK1/2).

tion and stimulates the ERK1/2 signalling cascade. 
PTH-induced translocation of β-arrestins to the cell 
membrane contributes to the anabolic action of PTH 
in bone, independent of classic G protein signalling.29

Hormonal action
Abundant evidence from humans and experimental 

animals indicates that PTH increases the rate of bone 
resorption and thereby the rate of bone remodelling.30,31 

PTH stimulates osteoclast formation by binding to 
PTHR1 on stromal/osteoblastic cells, increasing the 
production of the pro-osteoclastogenic cytokines 
receptor activator of NFkB ligand (RANKL) and 
macrophage colony stimulating factor (MCSF), while 

it suppresses the RANKL decoy receptor osteoprote-
gerin (OPG). Deletion of the PTH responsive region of 
the RANKL gene reduces the rate of bone resorption, 
mimicking the effects of hypoparathyroidism.32 Chronic 
elevation of PTH, as in primary hyperparathyroidism, 
also increases osteoblast number and bone formation. 
This occurs partly indirectly through stimulation 
of bone resorption, which releases growth factors 
embedded in the bone matrix and in turn promotes 
osteoblastogenesis. However, the net result in primary 
hyperparathyroidism is negative, leading to increased 
bone loss mainly in cortical bone. Cancellous bone is 
also lost with secondary hyperparathyroidism caused 
by dietary calcium deficiency, but it is preserved or 
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even increased in primary hyperparathyroidism or 
in experimental models with activating mutations of 
PTHR1.33,34 The underlying molecular mechanisms 
that contribute to these different effects of PTH ac-
tion in cortical vs. cancellous bone remain largely 
unknown. Intermittent administration of PTH acts in 
a different way, promoting osteoblast formation and 
function, but the mechanisms are dissimilar to those 
involved in chronic PTH elevation.12 PTH related 
peptide, which also binds to PTHR1, has a critical 
role during development. Recent genetic studies in 
mice have shown that PTHrP also has a postnatal 
role in regulating bone mass.35 Mice with PTHrP 
haploinsufficiency, or with deletion of the PTHrP gene 
specifically from osteoblasts, exhibit reduced bone 
formation due to increased apoptosis of osteoblasts.35 
In addition, the number of osteoclasts is reduced in 
these animals, most likely because of reduced RANKL 
expression.35 Therefore, activation of PTHR1 by 
either PTH or PTHrP leads to an increased rate of 
bone remodelling.36

Studies from mouse models and human diseases
Mice models in which PTHR1 has been inacti-

vated by homologous recombination demonstrate 
decreased trabecular bone and increased thickness 
of cortical bone during fetal development.37 These 
skeletal abnormalities are similar to those observed 
in patients with Blomstrand lethal chondrodysplasia, 
a rare autosomal recessive disorder caused by inacti-
vating PTHR1 mutations.38,39 Recent data also support 
an important role for PTH and PTHR1 in cachexia 
associated with chronic kidney disease.40 It has been 
reported that PTH and PTHrP through activation of 
PTHR1 mediate adipose tissue and muscle wasting. 
Adipo-PTHR knockout mice are resistant to adipose 
browning and preserve fat mass, while attenuation 
of skeletal muscle atrophy is also achieved, demon-
strating the presence of indirect mechanisms through 
which adipose tissue signals to skeletal muscles.40 

Furthermore, it also shows that the bone-sparing ef-
fect of estrogens is partly PTH/PTHR1-dependent.41 

In general, PTHR1 exerts distinct roles according 
to the stage of development. In developing tissues, 
it regulates the proliferation and differentiation of 
primordial cells, such as chondrocytes in skeletal 
growth plates and those leading to organogenesis of 

skin, mammary glands and teeth, through the actions 
of PTHrp.42 In adult life, PTHR1 is mainly expressed 
in bone and kidney10 and is critically associated with 
homeostatic maintenance of blood calcium levels via 
the actions of PTH released from the parathyroid 
glands.16

PTHR1 AND OSTEOBLASTS

Osteoblastic cells were considered up to now as 
the key targets for the bone anabolic action of PTH 
and its local counterpart PTHrP. PTHR1 is localized 
in osteoblasts and stromal cells in bone marrow, but 
not in bone marrow hematopoietic cells or osteoclasts. 
Osteoblast-targeted expression of constitutively active 
PTHR1 leads to increased osteoblast function in tra-
becular bone and on the endosteal surface of cortical 
bone.43 IGF-1 is required for the anabolic effect of 
PTH on bone formation, as it has been reported that 
PTH has few effects on IGF-1-null mice.44 In osteo-
blasts, the binding of PTH to PTHR1 activates adenyl 
cyclase and phospholipase C, leading to formation 
of cAMP and a subsequent increase in intracellular 
calcium concentration as well as activation of PKC, 
promoting osteoblastic bone formation.43 Osteoblasts 
in transgenic mice expressing a constitutively active 
form of PTHR1 only in the osteoblast lineage support 
accumulation of twice as many hematopoietic stem 
cells as normal. PTH not only exerts anabolic action 
by stimulating osteoblastic bone formation, but also 
upregulates hematopoiesis by improving the bone 
marrow microenvironment. In mice in which PTHR1 
is activated in osteoblastic cells alone, osteoblastic 
cells were increased in number and produced high 
levels of Jagged1, a ligand of Notch signalling that 
increases hematopoietic stem cells (HSC) fraction in 
vivo, while Notch inactivation by the gamma secretase 
inhibitor DAPT blocks HSC expansion in vitro.45

PTHR1 IN OSTEOCYTES 

Expression of PTHR1 was demonstrated in osteo-
cytes several years ago.23 Earlier studies showed that 
the main skeletal effects of PTH are recapitulated in 
transgenic mice expressing a constitutively active 
PTH receptor selectively in osteocytes by using of the 
dentin matrix 1 (Dmp1) promoter (DMP1-caPTHR1 
mice).46-49 These mice exhibit increased osteoblast 
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number and increased bone formation. They also 
exhibit high bone resorption, as evidenced by elevated 
resorption markers in the blood and urine, increased 
RANKL/OPG ratio and elevated M-CSF expression, 
increased osteoclastogenesis and increased cortical 
porosity. PTH-induced increased bone formation was 
reported on periosteal and endocortical surfaces, in 
bones formed by either endochondral or intramembra-
nous ossification50 in both male and female mice and 
regardless of age. Mice also demonstrated increased 
intracortical remodelling, revealing that PTH recep-
tor signalling in osteocytes governs periosteal bone 
formation and cortical bone turnover. 

On the other hand, targeted ablation of the PTH/
PTHrP receptor in osteocytes under the control of 
Dmp-1 promoter51-55 impairs bone structure and cal-
cium homeostasis.56 An anti-apoptotic role of PTH1R 
has also been reported in vertebral osteocytes in mice 
models and in in vitro cultures of the osteocyte-like 
cell line, MLO-Y4.57-59 

Abundant evidence supports the notion that car-
boxyl (C)-terminal fragments of PTH, which comprise 
the majority of circulating PTH, do not interact with 
PTH1R which mediates the classical hormone actions. 
C-PTH exerts specific effects on calcium homeostasis 
and bone metabolism via a specific receptor distinct 
from PTH1R, known as C-terminal PTH receptors 
(CPTHRs).60,61 Divieti et al reported that osteocytes 
expressing CPTHR might be the principal target cells 
for the unique actions of PTH C-fragments.60,61 Prideaux 
et al,62 using the immortalized cell line IDG-SW3 
which differentiates from osteoblast to osteocyte-
like cells in vitro and expresses a green fluorescent 
protein under the control of DMP-1, showed that 
PTH induces loss of the mature osteocyte phenotype 
and promotes the motility of these cells. These two 
effects are mediated through different mechanisms. 
Cell motility but not the loss of phenotype effect 
depends on calcium signalling. From a pharmacologi-
cal perspective, intermittent administration of PTH, 
which is currently the only available bone-anabolic 
agent, in mice rapidly attenuates both osteoblast and 
osteocyte apoptosis in vertebral bone. This appears to 
be a consequence of direct action in these cells, but 
also of indirect action through its inhibitory effect on 
sclerostin secretion by osteocytes.47,63,64 

PTHR1 and Wnt signalling
Sclerostin is a secreted glycoprotein encoded by 

the SOST gene in osteocytes and acts as an extracel-
lular inhibitor of Wnt signalling.65-67 Overexpression 
of SOST in transgenic mice creates a low bone mass 
phenotype, while SOST knockout mice exhibit a high 
bone mass phenotype with increased bone strength 
due to unleashing the activity of Wnt intracellular 
signalling.68-71 Loss of SOST function in mice results 
in decreased apoptosis of osteocytes.71 SOST is a target 
gene for PTH in bone,47,72-74 and sclerostin levels are 
reduced in the presence of PTH.75-77

Continuous infusion of PTH in mice suppresses 
SOST gene expression and reduces sclerostin protein 
expression in vertebral bone. The same effect has 
been documented in primary osteocyte cultures and 
in osteocytic MLO-A5 cells.47 The elevated FGF23 
expression in osteocytes from mice that are geneti-
cally modified to have a constitutively active PTHR1 
via the DMP1-promoter only in osteocytes (DMP1- 
caPTH1R transgenic mice) is corrected in double 
transgenic mice overespressing SOST in osteocytes.48 

Increased bone formation and increased bone 
mass in DMP1-caPTHR1 mice are abolished through 
overexpression of the SOST gene in osteocytes, dem-
onstrating that the increase in osteoblasts is due to 
reduced sclerostin expression and activation of Wnt 
signalling.46,49 This anabolic effect of PTH receptor 
signalling on the periosteal surface of cortical bone is 
Wnt-signalling-dependent and was abolished by the 
overexpression of SOST in osteocytes.50 On the other 
hand, increased osteoclast number and bone resorp-
tion also seen in these mice models are not affected 
by SOST overexpression, showing that the effect of 
PTH on osteoclasts is not mediated by Wnt signal-
ling. Taken together, these findings demonstrate that 
PTH receptor signalling in osteocytes regulates bone 
formation but not bone resorption via Wnt signalling 
and sclerostin. 

Furthermore, activation of PTH signalling in 
oestrogen-deprived ovariectomized (OVX) rats, in 
DMP1-caPTH1R transgenic mice or in mice that are 
genetically modified to have a constitutively active 
PTHR1 via the collagen type 1-promoter only in 
osteoblasts (2.3 col-caPTH1R mice), leads to sig-
nificantly reduced levels of SOST mRNA in calvaria, 
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vertebral and tibial bone34,47,72,78 and to a high bone 
mass phenotype.46 

On the other hand, experiments with SOST-deficient 
mice demonstrated that SOST expression is not re-
quired for the anabolic effect of intermittent infusion 
of PTH,79 whereas SOST deletion was shown to protect 
trabecular compartments from bone loss induced by 
high-dose continuous PTH infusion. Although the 
exact molecular mechanisms by which PTH induces 
sclerostin inhibition are not fully elucidated, recent 
work by Wein et al80 pointed to a critical role for salt-
inducible kinase 2 (SIK2). PTH intracellular signal-
ling activates PKA, which in turn phosphorylates and 
inactivates SIK2. Active (unphosphorylated) SIK2 
phosphorylates the histone deacetylases HDAC4 and 
HDAC5. When SIK2 is phosphorylated by PTH and 
is inactive, the phosphorylation levels of HDAC4 and 
HDAC5 are decreased, allowing them to enter the 
nucleus. Once in the nucleus, HDAC4 and HDAC5 
block the action of myocyte-specific enhancer factor 
2C (MEF2C), which in turn leads to reduced expres-
sion of the SOST gene (Figure 2). Small molecule 
SIK2 inhibitors mimic the action of PTH on many of 
the target-genes in osteocytes. Furthermore, admin-
istration of a SIK2 inhibitor for 2 weeks in mice led 
to increased bone mass and bone formation. 

PTH suppression of sclerostin in osteocytes in-
creases the availability of LRP6 in PTH signalling 
via a positive feedback mechanism (Figure 3).81 It 
has also been shown that PTH1R signalling in os-
teocytes increases bone mass and the rate of bone 
remodelling through LRP5-dependent and -independ-
ent mechanisms, respectively.46 Multiple signalling 
molecules apart form sclerostin are utilized by PTH 
in this crosstalk with the Wnt/β-catenin signalling 
pathway in osteocytes in order for PTH to promote 
bone formation.82 

Deletion of the Wnt co-receptor LRP5 attenuates 
the high bone mass phenotype but does not affect the 
increased remodelling rate, indicating that PTH signal-
ling in osteocytes stimulates the accrual of bone mass 
and the rate of bone remodelling by LRP5-dependent 
and -independent mechanisms, respectively.46

PTH and mechanical stress
Expression of the PTH receptor in osteocytes is 

indispensable for the PTH-anabolic response to me-
chanical loading in mice83 and uses different mecha-
notransduction pathways than in osteoblasts.84 

Axial loading of the ulnae in mice causes the ex-
pected strain-dependent increase in bone formation 
due to increased mineralizing surface covered by 
osteoblasts [mineralizing surface (MS)/bone surface 
(BS)] and increased activity of individual osteoblasts 
[mineral apposition rate (MAR)].

Loading-induced bone formation is markedly re-
duced in mice in which the PTHR is selectively deleted 
from osteocytes (DMP1-8kb-Cre) (cKO/PTHR1), 
mainly due to lack of MAR-stimulation by loading 

Figure 2. The role of SIK 2 in the regulation of SOST expres-
sion by PTH. AC: adenyle cyclase; SIK2: salt-inducible kinase 
2; HDAC: histone deacetylases; MEF2C: myocyte-specific en-
hancer factor 2C.
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at any strain magnitude. Loading-induced increases 
in MS/BS ratio is also reduced in cKO/PTHR1 mice, 
with significant increases induced only by medium and 
high strains.85 These findings indicate that signalling 
downstream of PTHR1 in osteocytes is required for 
the osteogenic response induced by mechanical force 
and strongly suggest that the osteocytic PTH recep-
tor is involved in the integration of mechanical and 
hormonal signals leading to coordinated regulation 
of bone formation. A functional interaction between 

mechanical stimulus and PTH-induced PTH1R acti-
vation is further supported by in vitro studies using 
primary cultures of osteoblasts and osteocytes.86,87 
PTH1R activation by either PTH or PTHrP ligand 
potentiates the response to mechanical strain through 
induction of both Cai

+2 influx and adenylate cyclase 
stimulation in both osteoblasts and osteocytes.86,87 
Recently, the role of the osteocytic PTHR1 during 
lactation was elucidated by the finding that during that 
period osteocytes express osteoclast-specific genes 

Figure 3. Functional interaction between PTHR1 and Wnt signalling in osteocytes. WIF1: Wnt inhibitory factor 1; SOST: sclerostin; 
DKK1: Dickopf 1; LRP5/6: low-density lipoprotein receptor 5/6; FZD: frizzled receptor; FRAT: Wnt signalling pathway regulator; 
GSK3β: glycogen synthase kinase 3 beta.
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such as TRAP, cathepsin K and carbonic anhydrase 
2 that make the osteocytes capable of perilacunar 
remodelling. When PTHR1 is ablated in osteocytes, 
the size of the lacunae does not increase and TRAP 
and cathepsin K are not elevated, indicating that 
PTHrP is an important mediator of this effect.88 These 
results are in agreement with previous studies that 
demonstrated enlarged lacunae in animals treated 
with exogenous PTH and suggest an important role 
for the receptor on osteocytes in controlling skeletal 
and mineral homeostasis. 

CONCLUDING REMARKS

Despite the extensive research of the last few dec-
ades, the exact mechanisms of action of parathyroid 
hormone and its receptor on the key protagonists of 
bone metabolism still display significant gaps. The 
hormone receptor acts through distinct intracellular 
pathways that are activated by different ligands pro-
viding pleiotropic actions to this significant hormone. 
These multiple functions depend on the type of cells, 
their differentiation stage and the general biochemical 
and mechanical conditions of the skeleton. The PTH 
receptor in osteocytes, which have emerged in recent 
years as the most important and most numerous cells 
of the bone, plays an important role in the inhibition 
of sclerostin expression by activation of SIK2 kinase, 
in the activity of the Wnt signalling pathway and in 
osteocyte differentiation and movement by activating 
calcium channels. Modification of these intracellu-
lar pathways could lead to the development of new 
agents for the treatment of metabolic bone diseases 
such as osteoporosis.
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