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Abstract 

Adiponectin is a white and brown adipose tissue hormone, also known as gelatin-binding 
protein-28 (GBP28), AdipoQ, adipocyte complement-related protein (ACRP30), or apM1. 
Adiponectin circulates in the bloodstream in trimeric, hexameric, and high-molecular-mass 
species, while different forms of adiponectin have been found to play distinct roles in the balance 
of energy homoeostasis. Adiponectin is an insulin sensitizing hormone that exerts its action 
through its receptors AdipoR1, AdipoR2, and T-cadherin. AdipoR1 is expressed abundantly 
in muscle, whereas AdipoR2 is predominantly expressed in the liver. Adiponectin is inversely 
proportional to obesity, diabetes, and other insulin-resistant states. In this review we present 
the current findings regarding the regulation of its production and several new findings per-
taining to its biological effects. Adiponectin enhances AMPK and the PPARα pathway in the 
liver and skeletal muscle. Adiponectin increases fatty acids oxidation, which lowers circulat-
ing free fatty acids and prevents insulin resistance. Adiponectin has been reported to exert an 
antiatherosclerotic effect. It inhibits macrophage activation and foam cell accumulation, while 
it also augments endothelial nitrous oxide production and protects the vasculature by reducing 
platelet aggregation and vasodilation. Apart from causing metabolic dysfunction, adiponectin 
deficiency may also contribute to coronary heart disease, steatohepatitis, insulin resistance, 
nonalcoholic fatty liver disease, and a wide array of cancers. In this study, we present ample 
evidence that adiponectin mediates multiple molecular pathways. We therefore support the 
concept that it shows distinct potential for being of therapeutic value in the treatment of obesity 
related diseases, ranging from metabolic syndrome to malignancies. 
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Introduction

Adiponectin, which is mainly produced in white 
adipose tissue (WAT), characteristically differs from 
most adipokines as it is negatively correlated with 
obesity. Adiponectin, a hormone, exerts multiple 
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biological effects throughout the body mediated 
by the specific receptors AdipoR1, AdipoR2, and 
T-cadherin.1 

In 1995, Lodish et al. identified a secretory pro-
tein from murine 3T3-L1 adipocytes and named it 
adipocyte complement-related protein of 30 kDa 
(Acrp30). It is a structural homolog to complement 
factor C1q and to a hibernation-specific protein 
isolated from the plasma of Siberian chipmunks.2 It 
forms large homo-oligomers that undergo a series 
of posttranslational modifications. Using the mRNA 
differential display technique, it was cloned and called 
adipoQ. The adipoQ cDNA encodes a polypeptide of 
247 amino acids, with a secretory signal sequence at 
the amino terminus, a collagenous region (Gly-X-Y 
repeats), and a globular domain.3

The human adiponectin gene was cloned through 
systematic sequencing of an adipose-tissue library. The 
apM1 gene encodes a 244 amino acid open reading 
frame containing a putative signal sequence repeat (66 
amino acids) followed by a cluster of aromatic residues 
near the C terminus having high local resemblance to 
collagens X and VIII and complement factor C1q.4 
In 1999, a group at Osaka University isolated the 
human adipose-specific transcript, the apM1 gene 
product, which was found to be a soluble matrix 
protein, and named it adiponectin. It was identified 
as a distinct protein among the adipokines because 
the plasma concentration of adiponectin decreases 
upon accumulation of visceral fat. Adiponectin was 
observed to be abundant in the plasma of healthy 
volunteers at a range of 1.9 to 17.0 mg/mL.5

In 2003, a group from Japan isolated complemen-
tary DNAs encoding the adiponectin receptors 1 and 2 
(AdipoR1 and AdipoR2) by expression cloning. These 
two adiponectin receptors have seven-transmembrane 
domains, but they are distinct from the topology of 
G-protein-coupled receptors. The AdipoR1 gene 
encodes for a 375-amino-acid protein with an esti-
mated molecular mass of 42.4 kDa, whereas AdipoR2 
encodes for a 311-amino-acid protein of 35.4 kDa. 
Suppression or expression of AdipoR1 and AdipoR2 
revealed that AdipoR1 is a high-affinity receptor for 
globular adiponectin and a low-affinity receptor for 
full-length adiponectin, whereas AdipoR2 has an 
intermediate affinity for both.6 

In 2004, Lodish and colleagues identified adiponec-
tin-binding proteins through retroviral expression 
of a C2C12 myoblast cDNA library in Ba/F3 cells. 
Subsequent DNA analysis revealed T-cadherin as an 
adiponectin-binding protein. T-cadherin is a unique 
cadherin molecule that lacks the transmembrane 
and cytoplasmic domains and is bound to the surface 
membrane through a glycosylphosphatidylinositol 
(GPI) anchor. The expression of T-cadherin was 
observed to confer binding of hexameric and HMW 
multimers but not trimeric adiponectin.1

The physiological role of adiponectin has not yet 
been fully elucidated, but it is believed that it has the 
ability to reduce glucose, triglycerides, and free fatty 
acids and that it plays a major role in the pathogen-
esis of metabolic syndrome. Metabolic syndrome 
comprises a cluster of metabolic disorders that give 
rise to such metabolic risk factors as visceral obesity, 
insulin resistance, hyperglycaemia, dyslipidaemia, 
and hypertension. In addition, numerous experimen-
tal and clinical observations have shown decreased 
adiponectin bioactivity in obesity and obesity-related 
complications, including insulin resistance, diabetes, 
cardiovascular diseases, and non-alcoholic fatty liver 
disease (NAFLD). The current review summarizes 
the recent progress made in our understanding of 
adiponectin production and biological effects. We 
also describe the latest experimental and clinical 
studies regarding this fascinating molecule.

Adiponectin receptors

The regulation of AdipoR1 and AdipoR2 is im-
portant for facilitating essential physiological func-
tions. AdipoR1 is ubiquitously expressed and exhibits 
high affinity to the ligand, whereas AdipoR2 exhibits 
intermediate affinity. The expression of adiponectin 
and its receptors has been investigated in streptozo-
tocin (STZ)-induced diabetic rat heart and in mouse 
skeletal muscle. STZ-induced diabetes up-regulates 
adiponectin receptors in the heart.7 Despite an in-
crease in cardiac adiponectin receptor 1 expression, 
there is an elevated cardiac inflammatory response 
and a decreased GLUT4 protein expression associated 
with a reduction in circulating adiponectin. In addi-
tion, AdipoR1 mRNA was increased in the skeletal 
muscle of streptozotocin (STZ)-induced diabetic mice 
and normal AdipoR1 levels were restored by insulin 
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tin secretion into the culture media.13 The precise 
mechanism by which insulin stimulates adiponectin 
biosynthesis remains obscure. 

It has been suggested that insulin suppresses the 
activity of FoxO1, a transrepressor (suppressor) of 
PPARγ, which is an inducer of adiponectin biosyn-
thesis. However, still to be explained is the well-
documented negative correlation between insulin and 
adiponectin levels in-vivo. Indeed, serum adiponectin 
levels are elevated in type I diabetic patients (i.e. 
patients with reduced levels of circulating insulin) as 
well as in patients with genetically defective insulin 
receptors when compared with healthy controls.14 
In contrast to several other adipokines, which cause 
insulin resistance, adiponectin expression is reduced 
in obese and insulin-resistant models. Increase in 
insulin resistance depresses the levels of circulating 
adiponectin. 

Oxidative stress has been found to augment insulin 
resistance, at the same time inhibiting the expression 
of adiponectin. Although the mechanism underlying 
this regulation is unclear, it may contribute to the 
decrease in plasma adiponectin in obesity, which is 
associated with increased oxidative stress in adipose 
tissue.15 Furthermore, hyperinsulinaemia significantly 
lowers plasma adiponectin levels under euglycaemic 
conditions.16 In addition, the HMW form of adiponec-
tin is selectively down-regulated in hyperinsulinaemia 
and type II diabetes. The reason that insulin has a 
different in-vitro and in-vivo effect on adiponectin 
levels remains unknown, but it is possible that insulin 
may activate some signaling pathways that indirectly 
suppress adiponectin biosynthesis and secretion. 
Further investigations should yield insights into this 
possibility.

Regulation of adiponectin at 
the transcriptional and post-
translational level (Figure 1)

PPARγ 

PPARγ is a member of the PPAR subfamilies 
of transcription factors, which is expressed mainly 
in adipose tissue and which is considered to be a 
positive regulator of adiponectin gene expression. 
Targeted deletion of PPARγ in adipose tissue of 
mice results in marked adipocyte hypocellularity and 

administration, while hepatic AdipoR2 gene expres-
sion was unaltered in STZ-induced diabetic mice.7,8

Some evidence suggests that T-cadherin can bind to 
the hexameric and HMW forms of adiponectin but not 
to monomer globular and trimeric forms. T-cadherin 
is ubiquitously expressed, with the highest expression 
found in the heart and the aortic, carotid, iliac, and kid-
ney arteries.1 T-cadherin is bound to adiponectin and 
is critical for the association of adiponectin protection 
against cardiac stress in mice. Denzel et al. concluded 
that deletion of T-cadherin abolished adiponectin 
cardioprotective effects in cardiac hypertrophy as well 
as in myocardial ischaemia-reperfusion injury. Re-
cently, clinical and laboratory studies confirmed that 
myocyte expression of PPARδ and the adiponectin 
receptors is highly coordinated.9 The mRNA levels of 
the three adiponectin receptors, AdipoR1, AdipoR2, 
and T-cadherin, were strongly interrelated (r ≥0.91) 
and these receptors were positively associated with 
PPARδ expression (r ≥0.75). The myocyte expression 
levels of AdipoR1 and T-cadherin were inversely as-
sociated with the donors’ fasting plasma triglycerides 
(P < .03).10 A relation between adiponectin receptors 
was also confirmed in the muscle tissue of 24 h fasted 
pigs in which the expression of T-cadherin was de-
creased, suggesting that the expression of T-cadherin 
can be regulated by metabolic status. Additionally, 
T-cadherin was expressed in smooth muscle cells 
and visceral adipose tissue, but only muscle mRNA 
expression was decreased by fasting.11 These data sug-
gest that T-cadherin can also participate in AdipoR1 
and AdipoR2 adiponectin binding as well as initiate 
adiponectin signal transduction.

PART ONE: Regulation of adiponectin 
production

Effect of insulin

Though the relationship between plasma insulin 
and adiponectin levels has been studied extensively, 
the exact role of insulin in adiponectin biosynthesis and 
secretion remains contentious. In 3T3-L1 adipocytes, 
insulin has a direct stimulatory effect on adiponectin 
gene expression.12 Studies have also demonstrated the 
selectivity of insulin in adiponectin regulation and 
secretion. Furthermore, exposing cultured 3T3-L1 
adipocytes to insulin leads to an increased adiponec-
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hypertrophy, elevated levels of plasma free fatty acids 
and triglyceride, and decreased levels of adiponec-
tin.17 Furthermore, a putative PPARγ obligatory 
binding (PPAR-responsive element) site is present 
in human and mouse adiponectin promoters, and 
point mutations at this site lead to reduced basal and 
TZD-induced adiponectin promoter transactivation.18 
PPARγ increases adiponectin levels and secretion 
by stimulating the expression of proteins involved 
in adiponectin assembly and secretion such as Erol-

Lα and DsbA-L. Activation of PPARγ enhances the 
expression levels of Ero1-Lα in mature adipocytes. 
PPARγ also elevates cellular levels of DsbA-L, a 
multifunctional factor in adiponectin multimeriza-
tion and secretion.19,20 

C/EBPα

The C/EBPs belong to the basic leucine zipper 
family and are comprised of six members, of which 
three (C/EBPα, -β, and -δ) have a role in adipogenesis. 

Figure 1. Regulation of adiponectin transcription by inflammatory mediators such as TNFα, IL-6, and IL-18 negatively regulates 
adiponectin gene expression. These inflammatory cytokines activate several pathways, including the JNK and ERK1/2 pathways, 
which have a major role in adiponectin regulation. Oxidative stress inhibits the expression of IRAK-3 and activates IRAK-1, which in 
turn activates activator protein 1 (AP-1) and decreases adiponectin activity. High fat diet induced obesity also suppresses adiponectin 
expression by increasing intracellular levels of PKA-mediated activation of CREB. Evidence suggests that insulin positively regulates 
adiponectin gene expression by activating PPARγ via suppressing FoxO1 activity, while a negatively correlated relationship has also 
been documented between insulin and adiponectin levels. FoxO1 increases adiponectin transcription via interaction with C/EBP. 
Regulation of FoxO1 by insulin and Sirt1 may provide a mechanism to dynamically regulate adiponectin gene expression.
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An early study demonstrated that phosphorylation 
of C/EBPα at a consensus ERK/glycogen synthase 
kinase 3 (GSK3) site regulates adiponectin gene 
expression during the C/EBPα-facilitated differentia-
tion of mouse fibroblasts into adipocytes. It should 
be noted that the NIH 3T3 cells produce a modest 
amount of adiponectin. Induction of the expression 
of both PPARγ and C/EBPα in these cells stimulates 
the production of adiponectin.21 In addition, over-
expression of endogenous C/EBPα increases and 
siRNA-mediated knockdown of C/EBPα decreases 
adiponectin mRNA levels in differentiated human 
Chub-S7 adipocytes, while neither C/EBP -β nor -δ 
significantly affect adiponectin expression in mature 
adipocytes. Thus, C/EBPα appears to be a key tran-
scription factor for full activation of human adiponec-
tin gene transcription in mature adipocytes through 
interaction with response elements in the intronic 
enhancer.22 However, C/EBPα does not appear to 
be the major player in the regulation of adiponectin 
gene expression and no difference is observed in C/
EBPα expression in the adipose tissues of subjects 
with insulin resistance compared to normal control 
subjects.18,23 This study corroborates the finding that 
the expression of C/EBPα is reduced by caloric restric-
tion in subjects with metabolic syndrome, which has 
been shown to increase cellular levels of adiponectin 
in rats.24 Additionally, C/EBPα negatively correlates 
with BMI, waist-hip ratio, and plasma glucose levels.25 
However, the exact physiological role of C/EBPα in 
regulating adiponectin expression in-vivo remains 
an open question.

SREBPSs

Sterol-regulatory-element-binding proteins 
(SREBPs) are unique members of the basic helix-loop-
helix leucine-zipper family of transcription factors. 
The binding of SREBPs to sterol response elements 
(SREs) promotes transcription and up-regulation of 
enzymes involved in lipid metabolism.26 Out of three 
subunits, SREBP1c is hypothesized to control adi-
ponectin gene expression in differentiated adipocytes. 
The levels of adiponectin mRNA and protein are 
reduced in the white adipose tissue of ob/ob and db/
db mice and there is a concomitant reduction of adi-
pocyte determination and differentiation-dependent 
factor 1 ADD1/SREBP1c transcription factor.18 In a 
study of 3T3-L1 adipocytes, adenoviral overexpres-

sion of SREBP-1c increased adiponectin mRNA and 
protein levels. SREBP-1c also promotes adiponectin 
transcription by association with another bHLH factor 
E47 and subsequent binding to E-boxes within the 
adiponectin promoter.27 However, a differential role 
of SREBP-1c has been observed in hepatocytes and 
adipocytes. Activation of this transcription factor in the 
liver leads to insulin resistance and steatosis, whereas 
activation of this gene in adipocytes may improve 
insulin sensitivity by activating the adiponectin gene.

FoxO1

FoxO1 is a member of the forkhead box O tran-
scription factor family. FoxO1 is involved in the 
regulation of adipocyte differentiation and positively 
regulates adiponectin transcription. The protein 
levels of FoxO1 and Sirt1 (sirtuin, silent mating type 
information regulation 2 homolog)1 are greatly re-
duced in fat tissues from high fat diet-induced obese 
and type II diabetic mouse models. It should be 
mentioned that the formation of a FoxO1-C/EBPα 
complex is stimulated by overexpression of Sirt1 
resulting in adiponectin promoter activation.28 Two 
FoxO1-responsive elements have been identified in 
the mouse adiponectin promoter. In addition, PPARγ 
positively regulates adiponectin gene expression and 
secretion and FoxO1 has been found to suppress 
PPARγ gene expression.29 

CREB

cAMP response element binding protein (CREB) 
regulates glucose homoeostasis and contributes to 
hyperglycaemia and insulin resistance in diabetes 
and obesity. Adipose-tissue specific expression of a 
dominant-negative CREB transgene increased the 
levels of adiponectin mRNA and circulating HMW 
adiponectin protein compared with wild-type con-
trols, but had no effect on plasma concentrations of 
resistin, retinol binding protein 4 (RBP4), TNFα, 
and IL-1. The constitutively active form of CREB 
increases the promoter activity of the mouse adi-
ponectin gene.30 Transfection studies using 5’ serial 
deleted promoters revealed the presence of a puta-
tive CRE location between the -1,250 and -1,000bp 
region. In addition, IGF-1 stimulates adiponectin 
expression through CREB phosphorylation via the 
ERK pathway and CREB is a positive regulator of 
mouse adiponectin gene expression in adipocytes.31 
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CREB plays an important role in the regulation of 
adiponectin expression in response to growth factors.

NFAT

NFAT comprises a family of transcription fac-
tors that have a definite role in 3T3-L1 adipocytes. 
NFATc4 and ATF3 negatively regulate adiponec-
tin gene expression. The binding activities of these 
transcriptional factors are significantly increased in 
WATs of the ob/ob and db/db mice compared to 
controls, which is consistent with a negative role of 
these transcriptional factors in adiponectin expression 
in obesity and type II diabetes.32 

TNFα and Interleukins

It is now well established that TNF-α and IL-6 ex-
pression and secretion increases in the adipose tissue 
of obese subjects and are negatively associated with 
adiponectin. In 3T3-L1 and human adipocyte cultures, 
insulin strongly enhances adiponectin expression (by 
approximately twofold) and secretion (threefold). 
It is believed that insulin up-regulates adiponectin 
expression and that TNFα suppresses the expression 
levels of activators involved in promoting adiponectin 
gene expression, such as PPARγ and Super Conserved 
Receptors Expressed mainly in Brain SREBs).33 The 
suppressive effect of TNFα on adiponectin transcrip-
tion may be mediated by c-Jun N-terminal kinase 
(JNK), which phosphorylates PPARγ and decreases 
its DNA-binding activity. TNFα also suppresses the 
transcription of the adiponectin gene by inhibiting 
transcriptional Sp1-binding activity. In addition, 
TNFα activates the expression of IGFBP-3, which 
suppresses adiponectin transcription and induces 
insulin resistance.34,35 

Several inflammatory cytokines such as IL-6, 
in concentrations similar to that circulating during 
metabolic syndrome, suppress in-vitro the levels of 
adiponectin transcript as well as its secretion by 3T3-
L1 adipocytes. This inhibition is partially reversed by 
pre-treatment of cells with the inhibitors of mitogen-
activated protein kinase (MAPK).36 Adiponectin 
expression is up-regulated via a mechanism that 
implicates PPARγ concomitantly with the decrease 
in TNF-α and IL-6 mRNA expression, suggesting 
that drugs as potential antagonists of TNF-α and IL-6 
should be considered prospective candidates for the 
treatment of metabolic diseases.37 Unlike IL-6, IL-18 

levels also increase with obesity and metabolic diseases 
and are inversely correlated with the plasma levels of 
adiponectin. IL-18 suppresses adiponectin expression 
in 3T3-L1 adipocytes via a signal transduction pathway 
involving extracellular-signal-regulated kinase 1/2 
(ERK1/2)-dependent NFATc4 phosphorylation.38 
IL-18 induces ERK 1/2-dependent phosphorylation 
and activation of NFATc4, which has a major role as 
a repressor of adiponectin transcription. The inhibi-
tory effect of IL-18 on adiponectin promoter activity 
was diminished by inactivation of ERK1/2 or RNA 
interference-mediated suppression of NFATc4.39 Fur-
thermore, a population-based sample of 1,059 Chinese 
men and women aged 35-54 years was performed to 
measure plasma IL-18, glucose, insulin, lipid profile, 
inflammatory markers, and adiponectin. Elevated 
plasma IL-18 was associated with higher metabolic 
syndrome prevalence in apparently healthy Chinese 
independent of traditional risk factors, fat mass index, 
inflammatory markers, and HMW-adiponectin.40 It 
was thus hypothesized that IL-18 may have a mild 
effect on obesity-induced suppression of adiponectin 
gene expression.

DsbA-L

Disulfide-bond A oxidoreductase-like protein 
(DsbA-L), also known as glutathione transferase 
(GST) Kappa, is a 25-kDa adiponectin-interactive 
protein. DsbA-L is expressed in various mouse tis-
sues such as liver, kidney, pancreas, and heart, but 
the highest expression of this protein is detected in 
adipose tissue, where adiponectin is synthesized and 
secreted.41 DsbA-L facilitates adiponectin folding 
and assembly and provides a protective effect against 
ER stress-mediated adiponectin down-regulation in 
obesity. Additionally, DsbA-L plays a critical role in 
the promoting effect of natural polyphenolic drugs 
on adiponectin multimerization and cellular levels.20,41 
The cellular levels of DsbA-L are significantly re-
duced in adipose tissues of obese mice and human 
subjects. Like adiponectin, DsbA-L expression in 
3T3- L1 adipocytes is stimulated by the insulin sen-
sitizer and inhibited by the inflammatory cytokine. 
Overexpression of DsbA-L promotes adiponectin 
multimerization, while suppressing DsbA-L expres-
sion selectively reduces adiponectin expression levels 
in 3T3-L1 adipocytes.42 
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ER and Oxidative Stress

Obesity leads to ER stress, which has been linked to 
the inhibition of adiponectin production in adipose tis-
sue. Adiponectin mRNA expression in adipose tissue 
of obese mice was negatively correlated with the ex-
pression levels of an ER stress marker, such as C/EBP 
homologous protein (CHOP).43 In cultured adipocytes, 
induction of increased mitochondrial biogenesis (via 
adenoviral overexpression of nuclear respiratory 
factor-1) augmented adiponectin synthesis, whereas 
impairment of mitochondrial function decreased it. 
Impaired mitochondrial function increased ER stress, 
and pharmacological agents causing mitochondrial 
or ER stress reduced adiponectin transcription via 
activation of JNK and following induction of ATF3.44 
Furthermore, reducing ER stress and inactivation 
of JNK by PPARα/γ and macelignan treatment el-
evated adiponectin expression in adipose tissue of 
obese diabetic db/db mice.45 The expression levels 
of adiponectin also decrease during oxidative stress 
and are negatively correlated with the production of 
ROS. Increased ROS generation augmented expres-
sion of NADPH oxidase and decreased expression 
of antioxidative enzymes. During oxidative stress, 
the expression of adiponectin mRNA is inhibited by 
glucose oxidase and a significant inverse correlation 
has been observed between 4-HNE formation and 
adiponectin secretion.46 The mechanism involved 
in obesity-mediated suppressed expression of adi-
ponectin has been studied in 3T3L1-cells. It appears 
that H2O2 markedly suppresses adiponectin mRNA 
expression and protein secretion, while it enhances 
plasminogen activator inhibitor (PAI-1) and IL-6 
production in mature adipocytes. Adiponectin ex-
pression was reduced by H2O2 via the Akt and JAK/
STAT pathway. Increased fat mass results in a hy-
poxic microenvironment, which has been associated 
with the decreased levels of adiponectin.47 During 
obesity, insulin-like growth factor binding protein-3 
(IGFBP-3) mediated the inhibition of adiponectin 
transcription by the hypoxia inducible factor-1 (HIF-
1α) dependent pathway. 

PART TWO: The pleiotropic effects  
of Adiponectin

The pleiotropic roles of adiponectin have been 
studied in multiple in-vitro and in-vivo models. In 

short, the multiple molecular targets of adiponectin 
mediate multiple pharmacological actions (Figure 2). 
There follows a discussion of the different therapeutic 
roles of adiponectin under relevant headings

Adiponectin in non-alcoholic fatty liver disease 
(NAFLD)

NAFLD is characterized by insulin resistance 
and is commonly associated with obesity and type 
II diabetes. The histology of NAFLD comprises a 
broad range of liver injuries ranging from simple 
nonalcoholic fatty liver to nonalcoholic steatohepatitis 
(NASH) and NASH-related cirrhosis complications. 
Hypoadiponectinaemia might be a risk factor for non-
alcoholic fatty liver disease. Serum adiponectin level 
has been found to be significantly lower in the early-
stage NASH group compared to the simple steatosis 
group (P <0.001).48,49 It is believed that adiponectin 
attenuates liver inflammation and fibrosis, possibly 
through the decrement in the hepatic and insulin 
resistance. Adiponectin is considered to have insulin 
sensitizing, antifibrogenic, and anti-inflammatory 
properties by acting on hepatocytes, hepatic stellate 
cells, and hepatic macrophages (Kupffer cells), re-
spectively. In the liver, adiponectin acts through the 
activation of the AMPK and PPAR-α pathways and 
inhibition of toll-like receptor-4 mediated signaling.50 
Adiponectin decreased gluconeogenesis, decreased 
free FFA influx into the liver, and increased FFA 
oxidation. In addition, adiponectin has antifibrotic 
action in the liver, mainly through down-regulating 
the expression of aldehyde oxidase, TGF and CTGF, 
and anti-inflammatory action by suppressing TNF-α 
and other proinflammatory cytokines and by inducing 
anti-inflammatory cytokines, such as IL-10.51

In clinical studies, expression of adiponectin is 
suppressed in the liver of obese patients and in NASH 
patients when compared with fatty liver, which has 
been observed with a higher grade of hepatic inflam-
mation and liver fibrosis.52 Furthermore, increased 
serum level of adiponectin has been observed in liver 
cirrhosis. Adiponectin in cirrhosis correlates to the 
clinical stage of the disease. Furthermore, plasma 
levels of adiponectin are markedly reduced in visceral 
obesity and states of insulin resistance such as NASH 
and type II diabetes. A negative association between 
serum levels of adiponectin and liver enzymes has 
been demonstrated in ‘healthy’ subjects. Patients 
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with both steatosis and NASH have decreased serum 
levels of adiponectin.53 Rosiglitazone therapy raises 
plasma adiponectin levels in type II diabetes with 
proteinuria. A negative correlation has been observed 
between plasma adiponectin concentrations and the 
degree of proteinuria after a four-week treatment. 
Moreover, a three-week treatment of non-diabetic, 
insulin-resistant subjects with pioglitazone improves 
insulin sensitivity in parallel to an elevation of the 
levels of circulating total and HMW adiponectin, 
whereas circulating lipids are not affected.54 In adi-
pocytes, both adiponectin and adipoR2 expression 

increased. Serum adiponectin does not appear to 
increase following metformin therapy compared 
to a 16-week treatment with rosiglitazone. Several 
studies from different centers have shown that two 
adiponectin gene single nucleotide polymorphisms 
(SNPs) (45GT and 276GT) were associated with 
NASH and predicted the severity of liver disease. 
In addition, SNP in the PPAR-γ gene was associated 
with NAFLD, possibly through the adiponectin path-
way.55,56 In animal models of NASH, the absence of 
adiponectin was found to initiate the progression of 
hepatic tumor formation, but in humans the role of 

Figure 2. Adiponectin exerts its action through its receptors AdipoR1, AdipoR2, and T-cadherin. T-cadherin is a truncated recep-
tor that can bind the hexameric and HMW oligomeric forms of adiponectin. AdipoR1 and AdipoR2 interact with the adaptor 
protein containing a pleckstrin homology domain, a phosphotyrosine domain, and a leucine zipper motif (APPL1), which binds the 
N-terminal intracellular domains of the receptors. The binding of adiponectin to its receptors provokes the activation of adenosine 
monophosphate AMPK and the activation of various signaling molecules, such as p38 mitogen-activated protein kinase p38 MAPK, 
PPAR, the RAS-associated protein Rab5, phosphatidylinositol 3-kinase (PI3K), and Akt. Activation of AMPK mediates pharmaco-
logical actions of adiponectin, including fatty acid oxidation, protein degradation, cytoprotection, and glucose uptake.
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adiponectin in the progression from NASH to HCC 
is still unresolved. 

Adiponectin in cardiovascular diseases

Cardiovascular diseases are associated with obesity 
and other metabolic disorders. Obesity is characterized 
by low serum adiponectin levels. The potential role 
of adiponectin in cardiovascular diseases has been 
observed in patients with coronary artery diseases 
(CAD), as they have lower levels of adiponectin 
irrespective of ethnic group.57 Intriguingly, HWM 
adiponectin has been linked to CAD. However, 
the hexamers are not affected and trimers increase, 
underlining the importance of HMW adiponectin in 
CAD in addition to the other obesity-related disor-
ders/diseases, perhaps due to the functional priori-
ties and tissue specificity shown by the adiponectin 
isoforms.58,59 The severity of hypoadiponectinaemia 
correlates to coronary lesions. Indeed, adiponectin 
levels are lower in patients suffering from CAD.60 
Furthermore, plasma adiponectin levels can be helpful 
in identifying patients susceptible to CAD.61 It is of 
interest that adiponectin reshapes myocardial infarc-
tion during acute injury.62 Adiponectin deficiency in 
ischaemia-reperfusion mice caused myocardial infarct 
and aggravation was up to 78%, with a surge in TNFα 
levels and a decrease in activation of AMPK activity. 
This resulted in increased apoptosis of myocytes and 
stromal cells. Treatment of mice with adiponectin 
abrogates the extent of infarction, while the levels of 
TNFα are suppressed. These effects involve COX-2, 
prostaglandin E synthase (PGES), through the PGE 
receptor 4 dependent pathway. It should be noted 
here that mice deficient in adiponectin suffer from 
myocardial ischaemia and injury due to reduced 
levels of cyclooxygenase-2 (COX-2), suggesting that 
adiponectin regulates COX-2 production. It is also 
of interest that Shingosine kinase (SphK) affects 
COX-2 production via adiponectin in neonatal rat 
cardiomyocytes.62,63 A possible role of adiponectin in 
atherosclerosis has been observed, in which activated 
macrophages attach to the vascular walls and convert 
into foam cells. These cells mass lipid droplets and re-
cruit other macrophages to the site, ultimately leading 
to localized inflammation. Adhesion of monocytes to 
human aortic endothelial cells (HAECs), facilitated 
by TNFα, is inhibited by adiponectin by reducing 
the expression of vascular cell adhesion molecule-1 

(VCAM-1), E-selectin, and intercellular adhesion 
molecule-1 (ICAM-1) on the surface of HAECs.64 
Adiponectin also binds to collagen (I, III and V) 
present in vascular walls but only in injured vessels.65 
Adiponectin inhibits the transformation of human 
monocyte-derived macrophages into foam cells by 
inhibiting the class A macrophage scavenger recep-
tor. Some findings suggest a role of adiponectin in 
atherosclerosis by inhibiting binding of LDL to bigly-
can, which is a vascular proteoglycan. This ultimately 
decreases lipid accumulation in the subendothelial 
space, the cause of atherosclerotic plaque formation.66 
In addition, single nucleotide polymorphisms (SNPs) 
at position +276 in the adiponectin gene have been 
associated with CAD. T/T homozygous is at a lower 
risk of developing CAD than G/G or G/T variants of 
the genes. A “C” to “G” variant at position 11,377 in 
the promoter region of adiponectin has been linked to 
coronary atherosclerosis and other related diseases. 
T-cadherin expression is higher in athero-resistant 
than atherosclerosis susceptible coronary arteries, 
which indicates that its expression is involved in the 
progression of atherosclerosis.67,68 Both T-cadherin 
and adiponectin have been found in the vicinity of 
injured vessels, which suggests that they have a role 
in atherosclerosis.

Adiponectin has been shown to activate both the 
AMPK and PPAR-α pathways and to increase the 
expression of AdipoR1 in CAD. In patients with 
coronary heart failure, however, despite increased 
muscle and circulating adiponectin levels, the PPAR-α/
AMPK pathway is deactivated, resulting in decreased 
AdipoR1 and fatty acid and glucose metabolism 
enzymes. All these observations argue in favor of a 
state of adiponectin resistance in this disease.69

Adiponectin in obesity and type II diabetes

A steep rise in the prevalence of obesity has oc-
curred over the past few decades. Obesity is inversely 
related to adiponectin, making adiponectin a negative 
marker of metabolic syndrome. Furthermore, the 
expression of the receptors AdipoR1 and AdipoR2 
decline by 30% in the subcutaneous fat of obese indi-
viduals, while they normalize following weight loss.70 
It is by now well established that adiponectin plays 
an important role in type II diabetes, hypertension, 
multiple sclerosis (MS), and the dyslipidaemias. The 
most significant role played by adiponectin is that of 
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its insulin-sensitizing effect. Adiponectin levels in the 
diabetic’s blood are lower than normal, whereas higher 
levels of adiponectin in plasma minimize the risk of 
developing type II diabetes.71 Additionally, adiponetin 
relates negatively to blood glucose and insulin levels. 
Total adiponectin, HMW adiponectin, and the HMW 
ratio all are inversely related to homeostasis model 
assessment (HOMA) insulin resistance index. The 
HMW ratio is considered to be a better indicator of 
insulin resistance than total plasma adiponectin levels, 
this being supported by the fact that mutations, which 
affect the multimerization of adiponectin, render a 
person more susceptible to diabetes.72 The role of 
adiponectin in insulin resistance was determined by 
using knockout mice. These mice had normal plasma 
insulin levels but its role in lowering the blood glucose 
level was severely impaired, this clearly pointing to the 
role of adiponectin in glucose tolerance.73 Likewise, 
the absence of serum adiponectin in lipoatrophic mice 
causes hyperglycaemia and hyperinsulinaemia, which 
can be normalized by adiponectin injections. The 
ability of adiponectin to ameliorate insulin resistance 
has been documented in db/db mice.74 All studies on 
the putative role of adiponectin in insulin resistance 
and type II diabetes suggest that decreased levels of 
adiponectin cause susceptibility to these disorders. 

Adiponectin in cancer

A good deal of compelling evidence has shown 
that circulating adiponectin levels are inversely as-
sociated with the risk of malignancies linked to obe-
sity and insulin resistance, including endometrial 
cancer, postmenopausal breast cancer, leukaemia, 
and colon, gastric, and prostate cancer. Adiponectin 
modulates several intracellular signaling pathways and 
stimulates AMPK, PPARγ, and MAPK in classical 
insulin target organs such as the liver and skeletal 
muscles.75 Adiponectin is a well known insulin sensi-
tizing hormone that inhibits cancer progression and 
invasion through its receptors (AdipoR1, AdipoR2). 
The expression of adiponectin receptors in lung 
tissues was apparent only in the areas of cancerous 
lesions (64.2% AdipoR1 and 61.9% AdipoR2).76 
Studies have shown that individuals with low levels 
of adiponectin (hypoadiponectinaemia) could be at 
a higher risk of developing tumors, including those 
suffering from polycystic ovary syndrome (PCOS). 
It should be noted here that PCOS is characterized 

by hyperandrogenism, most probably because the 
circulating high levels of insulin stimulate the ovary 
to produce more androgens.77 Hyperinsulinaemia 
stimulates androgen production, while at the same 
time it decreases the production of sex hormone 
binding globulin (SHBG), leading to an even higher 
hyperandrogenic environment.77 The aforementioned 
description supports the finding that adiponectin is 
negatively correlated with insulin sensitivity in women 
with PCOS.

Future prospects

In conclusion, adiponectin exerts an insulin-sen-
sitizing action via an enhancement of AMPK and 
PPARα, this having profound effects on fatty acid 
oxidation and inflammation. Drugs affecting the levels 
of adiponectin may have a role in the treatment of 
NAFLD, cardiovascular disease, type II diabetes, and 
possibly in preventing metabolic syndrome-related 
cancers. Significantly, modulation of adiponectin 
actions through expression of adiponectin receptors 
may be a novel and promising therapeutic strategy. 

Several in-vitro and in-vivo studies have marked 
progress in exploring the physiological mechanism 
via which adiponectin exerts its action. In particu-
lar, knowledge concerning the pleiotropic roles of 
adiponcetin has been accumulating at a rapid pace. 
Clinical studies aimed at reducing the deleterious ef-
fects of a number of ailments have been undertaken 
and this, in conjunction with a better understanding 
of the adiponectin genetic bases for these processes 
and the cellular events that underlie them should 
enhance our ability to devise new and better ap-
proaches aimed at minimizing the adverse effects 
of these diseases. However, many questions need 
to be addressed before adiponectin can be used as 
a potent therapeutic target. For example, the pres-
ence of different adiponectin oligomeric isoforms 
and production sites, the sexual dimorphism in adi-
ponectin concentration and oligomeric isoform dis-
tribution, and the identification of multiple receptors 
with differing affinity for adiponectin oligomers all 
add to the complexity of adiponectin actions across 
an array of physiological processes and diseases. 
Nevertheless, studies in animal models of diabetes, 
obesity, and atherosclerosis clearly demonstrated 
that adiponectin can indeed have beneficial effects 
on those disease states. These findings therefore 
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suggest that adiponectin is a promising therapeutic 
option in obesity-related diseases. 
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