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ABSTRACT

Abnormalities of the Hypothalamic-Pituitary-Adrenal (HPA) axis have been documented in 
HIV patients in the early as well as late stages of the infection and range from subtle subclini-
cal disturbances to frank adrenal insufficiency. Potential etiologies of these disorders include 
opportunistic infections, neoplasms, drugs administered to treat infections, cytokine abnor-
malities associated with the HIV disease process and acquired alterations in tissue sensitivity 
to glucocorticoids. In this article, we present a concise review of HPA abnormalities in HIV 
infection and disease with regard to their etiology with emphasis on syndromes of hypersen-
sitivity/resistance to glucocorticoids associated with antiviral medications and/or the HIV 
infection itself.
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Introduction

HPA axis

The HPA axis and the systemic sympathetic/ad-
renomedullary (sympathoadrenal) system are the 
peripheral branches of the stress system, whose main 
function is to maintain basal and stress-related ho-
meostasis.1 Biologic, physical or psychologic stimuli 
activate the stress system, including the HPA axis. Such 
activation has been referred to as stress response.2 
The primary mediator of this response is cortico-
tropin-releasing hormone (CRH), a 41-amino acid 

peptide that plays a central role in coordinating the 
HPA axis and the systemic response to stress,3 act-
ing as the main physiologic ACTH stimulus.4 ACTH 
leads to secretion of cortisol (F) and other adrenal 
steroids, such as dehydroepiandrosterone (DHEA) 
and aldosterone.5

The HPA axis and the immune-inflammatory 
response

Complex interactions exist between the HPA axis 
and the immune system.1,6,7 Several inflammatory 
signals, mainly consisting of circulating cytokines, are 
produced as a result of innate and adaptive immune 
system activation. These cytokines play a major role 
in the protection of the organism from foreign attacks 
and in the pathogenesis of autoimmune processes,8 
accounting for most of HPA axis activation dur-
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of cortisol associated with blunted responsiveness to 
cosyntropin were also reported.20 The significance of 
such blunted responses is not clear. Evaluation of the 
HPA axis with CRH test in patients with early HIV 
infection who had normal responses to cosyntropin re-
vealed reduced cortisol responsiveness,19,20 suggesting 
that many asymptomatic patients in the early stages of 
the disease may have subclinical primary or second-
ary adrenal insufficiency. The low responsiveness of 
the pituitary to CRH was attributed to a reversible 
effect of cytokines.13 In a study of 25 asymptomatic 
HIV patients, normal adrenal capacity was reported; 
however, 32% had elevated plasma ACTH at the 
two-year follow-up, suggesting a progressively com-
promised adrenal reserve.21 With progression towards 
AIDS, overt adrenal insufficiency may be established 
in some patients, often secondary. However, in AIDS 
patients, adrenal function is rarely compromised and 
the adrenal insufficiency observed in some of them 
can be attributed to specific causes, such as adrenal 
or pituitary infection or neoplastic infiltration, and 
is associated with the typical biochemical features of 
Addison’s disease.

Pathogenetic mechanisms of HPA axis 
dysfunction in HIV patients

Hypercortisolemia in AIDS patients

In a considerable number of AIDS patients, ele
vated basal cortisol levels have been observed.19 
This might be due to a chronic stress-related shift of 
steroid production from adrenal androgens toward 
cortisol. Another possible explanation is the increasing 
plasma concentrations of cortisol-binding globulin 
(CBG) observed with the progression of the disease.22 
High cortisol levels associated with low ACTH levels 
may indicate that in HIV infection, cytokines, such 
as IL-1β and IL-6, directly stimulate the adrenal 
glucocorticoid synthesis pathway.13,18 Concomitant 
high levels of ACTH and cortisol often observed in 
these patients suggest a stimulatory effect of these 
cytokines on CRH release.23 In addition, more recent 
data suggest that the HIV envelope protein gp-120 
might induce HPA axis hyperactivity.25 Whether the 
observed high cortisol levels are beneficial, due to 
the anti-inflammatory properties of this hormone, 
or deleterious, as a result of its immunosuppressive 

ing an ongoing infectious or inflammatory disease. 
Among them, tumor necrosis factor-alpha (TNF-α), 
interleukin (IL)-1 and IL-6 activate the HPA axis 
independently, albeit in a synergistic way.9

In addition to their effects on the hypothalamus, 
cytokines can stimulate ACTH and cortisol release 
by acting directly on the pituitary and adrenals, re-
spectively.10,11 Other inflammatory mediators, like 
interferon-α, interferon-γ, interleukin-2, epidermal 
growth factor (EGF), transforming growth factor-β 
(TGF-β) and platelet activating factor (PAF), may 
also participate in the regulation of the HPA axis, 
directly or indirectly, by stimulating the release of 
inflammatory cytokines.1,3

Activation of the HPA axis and hence the release 
of glucocorticoids has a pivotal role in adaptation dur-
ing the stress of infection by modulating the immune 
inflammatory response. Glucocorticoids suppress 
immune activation of inflammatory cells, inhibit 
the production of cytokines (TNF-α, IL-1β, IL-6) 
and other inflammatory mediators1,3 and suppress 
certain subgroups of lymphocytes, namely Th1 lym-
phocytes.1,3 Certain cytokines (IL-2, IL-4) can induce 
resistance to glucocorticoids by decreasing the affinity 
of the glucocorticoid receptor to its ligand.12 In HIV 
infection and disease, cytokines have a central role 
in activating the HPA axis and thus in the regulation 
of the immune response (Figure 1).

HPA function in HIV patients

The HPA axis has been examined extensively in 
AIDS and HIV-infected patients. High13,14 or nor-
mal15,16 basal cortisol levels and high,16,17 low17,18 or 
normal19 ACTH plasma levels have been reported. 
Evaluation using CRH and/or ACTH has revealed 
derangement of the HPA axis ranging from sub-
clinical alterations in cortisol levels to frank adrenal 
insufficiency, depending on whether the subjects 
were patients in the early or advanced stages of HIV 
infection.

In patients with early HIV infection, adrenal 
stimulation with ACTH (cosyntropin test) revealed 
subnormal responses in 8-14% of cases,16,18,19 whereas 
in advanced HIV infection and in AIDS the respective 
rate was 54%.19 Patients with elevated baseline levels 
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properties, remains unclear. However, as in other 
forms of acute or chronic illness, it might reflect an 
adaptive, albeit allostatic, stress response.

Glucocorticoid resistance:

A subset of AIDS patients have clinical manifesta-
tions indicative of adrenal insufficiency (hypotension, 
fatigue, skin and mucosal pigmentation) in parallel 
with a biochemically hyperfunctioning HPA axis 
characterized by hypercortisolemia and a moderate 
increase of ACTH.26 In these patients, glucocorticoid 

affinity to its ligand was reduced and the glucocorticoid 
receptor (GR) number was increased, suggesting a 
partial glucocorticoid resistance state. As mentioned 
above, this phenomenon might be due to altered 
cytokine action. A similar glucocorticoid resistance 
state is present in glucocorticoid resistant asthma 
type 2 patients. These patients have a specific cyto-
kine pattern consisting mainly of elevated IL-2 and 
IL-4 and also exhibit reduced glucocorticoid affinity 
to its ligand, closely resembling the glucocorticoid 
resistance state found in the aforementioned AIDS 

Figure 1. Schematic representation of HIV-1 effects on the HPA axis.

HIV-1 stimulates glucocorticoid action by increasing glucocorticoid sensitivity through the direct effect of Vpr in target tissues.

HIV-1 envelope protein gp120 induces glucocorticoid secretion by direct stimulation of the HPA axis.

Interleukins-1 and -6 have a stimulatory effect on glucocorticoid secretion both directly by inducing secretion via the adrenal cortex 
and indirectly by activating CRH and ACTH secretion. A specific subset of patients exhibits glucocorticoid resistant-like phenotype 
probably attributable to the effects of interleukins IL-2 and IL-4 secreted by infected T cells on glucocorticoid action.



208	 E. Zapanti ET AL

control subjects. In contrast, the same study demon-
strated an intact ovarian androgen responsiveness to 
hCG stimulation.37,38

Influence of altered steroid production on 
immune status in AIDS

Plasma DHEA concentrations correlate posi-
tively with the CD4 cell count.39 Also, certain studies 
demonstrate a negative linear correlation between 
CD4 count and cortisol levels,40 while others do 
not.39 It has been suggested that the pattern of high 
cortisol/low DHEA-S levels is associated with HIV 
illness markers, including viral load, and that this 
finding carries a negative prognostic value.40 In fact, 
a reduced DHEA-S/cortisol ratio is associated with a 
deterioration of the immune status of HIV-infected 
patients due to a shift from a Th1- to a Th2-driven 
immune response.41 Thus, AIDS patients with dimin-
ished DHEA-S levels display an excessive production 
of cytokines by Th2 cells (IL-4, IL-5, IL-6, IL-10) 
and a suppression of cytokines (IL-2, IFN-γ, IL-12) 
secreted by Th1 cells, the latter apparently negatively 
affecting the clinical course of the disease. DHEA-S 
supplementation appears to restore cytokine produc-
tion in animal models.42

Adrenal insufficiency in HIV-infected 
patients

Etiology:

Concomitant opportunistic infections in patients 
with HIV infection may compromise adrenal function 
by acting at several levels of the HPA axis (Table 1). 
Adrenal or pituitary infection can lead to adrenal 
insufficiency which can be subclinical or overt with 
the progression towards AIDS.43 Direct HIV infec-
tion of the adrenals and adrenal neoplasms (Kaposi’s 
sarcoma, lymphoma) can impair adrenal function 
directly. Anti-adrenal antibodies have been detected in 
HIV patients, probably reflecting thymic dysfunction 
or an epiphenomenon linked to nonspecific B-cell 
activation.44 Several medications commonly used 
in the treatment of HIV-infected patients interfere 
with adrenal function. Among these, ketoconazole 
inhibits steroidogenesis, while rifampin and pheny-
toin enhance steroid metabolism and may unmask 
adrenal insufficiency in patients with a decreased 
adrenal reserve.45-47 The progestational agent meg-

patients.27 Another possible explanation for the rela-
tive glucocorticoid resistance of these patients is the 
increased expression of the GRβ splicing variant of 
the glucocorticoid receptor relatively to the expres-
sion of the GRα isoform.28 The GRα isoform is the 
main mediator of glucocorticoid activity and the GRβ 
isoform is known to inhibit GRα action. Thus, the 
increased intracellular proportion of GRβ isoform 
leads to a decreased glucocorticoid effect.29,30

Involvement of other adrenal zones

Mineralocorticoids:

Both hyperreninemic and hyporeninemic hypoal-
dosteronism have been found in HIV-infected pa-
tients.31 Although frank mineralocorticoid deficiency 
is uncommon, an impaired aldosterone response to 
ACTH is observed in many HIV-infected patients.21 
Hyponatremia and hyperkalemia are also common 
findings in AIDS patients. However, these abnor-
malities are most likely due to drug toxicities rather 
than the HIV infection itself. Other causes of electro-
lyte abnormalities include interstitial kidney disease 
and the syndrome of inappropriate ADH secretion 
secondary to pulmonary or central nervous system 
processes.32 Two cases of primary hyperaldosteron-
ism have been reported in HIV-infected patients.33 Ιt 
was proposed that hyperaldosteronism in these cases 
might be due to the intrinsic renin-like activity of the 
HIV aspartic protease.

Adrenal androgens:

In HIV-infected patients, steroid metabolism 
exhibits a shift from adrenal androgens and 17-deoxys-
teroids towards cortisol.34 A similar pattern of shunting 
away from adrenal androgens and towards cortisol 
has been observed in acute and chronic illness, as well 
as in malnutrition among non-HIV patients.35 Such a 
pattern of high cortisol and reduced DHEA may be 
due to a decreased adrenal 17,20-lyase activity.36 In 
a study investigating ovarian and adrenal function in 
HIV-infected women with AIDS, significantly reduced 
DHEA and increased cortisol responses to ACTH 
were demonstrated. The ratio of the DHEA to cortisol 
response (an index of shunting away from adrenal 
androgen secretion and towards increased cortisol 
production) was significantly decreased in women 
with AIDS-related wasting syndrome compared to 



HPA axis in HIV infection and disease	 209

estrol acetate exhibits intrinsic glucocorticoid activity 
and prolonged administration can induce secondary 
adrenal insufficiency. Abrupt withdrawal of megestrol 
acetate, especially after chronic use, can precipitate 
acute adrenal insufficiency48 (Table 1).

Autopsy findings:

Autopsy studies have revealed adrenal gland 
involvement in 40-90% of cases and pituitary gland 
involvement in 30% of cases.49-51 Adrenal and pituitary 
functions may be affected by infection, malignancy, 
hemorrhage, necrosis and fibrosis. Cytomegalovirus 
infection of the adrenals is the most common finding 
at autopsies. CMV adrenalitis is characterized by the 
presence of intracytoplasmic and intranuclear inclu-
sion bodies in enlarged adrenal glands.52 Adrenal 
insufficiency arises after more than 80% of adrenal 
tissue has been destroyed.53 Interestingly, 3% of the 
autopsies performed in unselected patients with 
AIDS revealed CMV infection and adrenal necrosis 
in more than 80% of adrenal tissue.54 This finding is 
consistent with that derived from another autopsy 
series, in which the frequency of adrenal insufficiency 
in antemortem studies was 3%.55 Opportunistic in-
fections by Mycobacterium avium-complex (MAC), 
Mycobacterium tuberculosis, Cryptococcus neofor-
mans, Toxoplasma gondii, Pneumocystis carinii and 
Histoplasma capsulatum have also been found on 

pathologic examination of the adrenals.56

Management of adrenal insufficiency 
in HIV-infected patients

Identification of adrenal insufficiency in HIV-in-
fected patients is imperative because treatment with 
corticosteroids might be life-saving. On the other 
hand, institution of therapy without confirmed adrenal 
insufficiency might worsen underlying opportunistic 
infections. The diagnosis of adrenal insufficiency 
in the setting of HIV infection may be challenging 
because many of these patients have nonspecific 
symptoms such as fatigue, weight loss, nausea and 
vomiting, resembling those of adrenal insufficiency. 
However, prompt evaluation of HPA axis function 
should be performed in all end-stage AIDS patients, 
in patients with specific manifestations of adrenal 
insufficiency (skin and mucosa hyperpigmentation, 
hyponatremia and hyperkalemia) and in patients at 
increased risk of developing adrenal insufficiency 
(patients with tuberculosis or disseminated cytome-
galovirus infection). In such patients, determination 
of baseline plasma cortisol and ACTH levels and a 
cosyntropin stimulation test should be carried out. 
As in other forms of adrenal insufficiency, if the re-
sponse to cosyntropin is inadequate, patients should 
be treated for adrenal insufficiency. If the response 
to the cosyntropin test is normal and there is still a 
strong suspicion of secondary adrenal insufficiency 
(for example, due to hypopituitarism, glucocorticoid 
or megestrol acetate use), then testing with CRH or 
insulin-induced hypoglycemia should be performed 
for the evaluation of the integrity of the HPA axis.

HIV patients with increased baseline cortisol levels 
might have blunted response to the cosyntropin test, 
suggesting impaired adrenal reserve. The manage-
ment of this subset of patients is often challenging. 
Among this subset, hydrocortisone supplementation 
should be administered cautiously because chronic 
glucocorticoid therapy may have significant adverse 
consequences in these individuals, who are already im-
munocompromised.57 Whenever adrenal insufficiency 
can be attributed to an identifiable etiologic factor, 
specific therapeutic measures should be undertaken. 
If drugs known to impair adrenal function are being 
administered to AIDS patients, then alternative 

Table 1. Possible mechanisms of HPA axis derangement in HIV 
infection

Adrenal gland

Direct HIV infection

Infectious adrenalitis (CMV, Mycobacterium, Cryptococcus, 
Histoplasmosis, Pneumocystis carinii)

Neoplastic infiltration (Kaposi’s sarcoma, Lymphoma, Adreno-
cortical carcinoma)

Adrenal hemorrhage

Drugs (ketoconazole, rifampin, phenytoin)

Autoimmune

Reversible inhibitory cytokine (TNF-α) effect

–

–

–

–

–

–

–

Hypothalamic-pituitary unit

Pituitary infection

Cytokine related HPA axis abnormalities

Drugs (glucocorticoids, megestrol acetate)

–

–

–
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`buffalo hump’, extremity thinning and muscle wast-
ing, marked dyslipidemia and insulin resistance. Since 
the clinical manifestations of this syndrome closely 
resemble those of chronic glucocorticoid excess as 
seen in Cushing’s syndrome, the term ‘pseudo-Cush-
ing’ was initially used to describe this syndrome.62 
However, HPA axis hyperactivity, which is com-
monly seen in HIV-infected patients, seems to be 
an unlikely cause of ARIRLS. These patients have 
normal baseline (and CRH-stimulated) ACTH and 
cortisol values concomitantly with normal excretion 
of 24-h urinary free cortisol.63 Cytokine abnormalities 
commonly seen in AIDS patients, such as the already 
mentioned increase in TNF-α, IL-1β and IL-6, may 
also contribute to the insulin resistance observed in 
these patients, either by acting directly on the insulin 
signaling system or by stimulating the target tissue 
11-beta-oxidoreductase of cortisone, converting it to 
cortisol in target tissue.62 Other explanations include 
antiretroviral regiments and protease inhibitors, in 
particular, as well as various viral agents as indicated 
below.

Protease inhibitors (PIs)

AIDS-related lipodystrophy was initially reported 
in patients under treatment with protease inhibi-
tors. Thus, the pathogenesis of the syndrome was 
assumed to be related to an adverse effect of these 
drugs. Protease inhibitors alter lipid and carbohydrate 
metabolism,64 induce adipocyte apoptosis (sparing 
visceral adipose tissue),65 provoke mitochondrial 
injury,66 reduce glucose uptake and phosphorylation 
by skeletal muscles,67 cause cytokine abnormalities,53 
lower adiponectin levels68 and block lamin A synthesis 
(thus leading to accumulation of prelamin A in adi-
pose tissue).69 Of particular interest is the fact that 
HIV-1 protease has about 60% homology with the 
low-density lipoprotein receptor-like protein (LRP) 
and cytoplasmic retinoic-acid binding protein type 
1 (CRABP-1).62,63 LRP plays an important role in 
hepatocyte and adipocyte triglyceride metabolism and 
protease inhibitors lower LRP levels.70 A critical step 
of the protease inhibitor-induced lipodystrophy is the 
inhibition of adipocyte expression of PPAR-γ, which 
might induce apoptosis and impaired differentiation 
of peripheral adipocytes, resulting in fat redistribu-
tion.71 Thiazolidinediones (PPAR-γ agonists) increase 
insulin sensitivity in HIV lipoatrophic patients.72 

therapeutic methods should be sought, using agents 
known not to affect the HPA axis, whenever possible. 
For example, fluconazole, which does not appear to 
affect adrenal function, may be used instead of ke-
toconazole. The action of some agents is reversible. 
For example, hypocortisolism induced by rifampin 
has been shown46 to subside after drug withdrawal. 
In cases in which the offending agent cannot be 
substituted or discontinued, evaluation of HPA axis 
function should be performed, and in patients with 
abnormal adrenal function, hydrocortisone replace-
ment therapy should be instituted.

Patients with documented adrenal insufficiency 
should be treated with hydrocortisone 15-25 mg per 
day in two divided doses, with the larger dose ad-
ministered in the morning. In patients with primary 
adrenal insufficiency, the addition of mineralocor
ticoid replacement might be required (fludrocor-
tisone acetate 0.05-0.2 mg per day). As in any case 
of adrenal insufficiency, the dose of hydrocortisone 
should be increased up to 2 to 3 times in moderate 
stress states. In cases of severe stress, patients will 
require even higher doses of glucocorticoids (up to 
300 mg hydrocortisone per day). Increased doses of 
hydrocortisone may also be required in cases of con-
comitant administration of agents known to stimulate 
cortisol clearance such as phenyntoin. If rifampin is 
used (i.e. for extrapulmonary tuberculosis treatment), 
then doubling or tripling the dose of adrenal steroids 
is recommended46

AIDS-related insulin resistance  
and lipodystrophy syndromes

Extensive use of antiretroviral drugs and protease 
inhibitors yields significantly improved survival rates 
of AIDS patients. However, this has led to the emer-
gence of novel morbidities that pose an important, 
albeit less imminent threat for these patients. Central 
among them is the AIDS-related insulin resistance 
and lipodystrophy syndrome (ARIRLS).58-60 The risk 
factors of this syndrome include: older age (older 
than 40 years of age), female sex, elevated serum 
triglyceride levels, low nadir CD4 cell count and an 
advanced stage of HIV infection.61 The phenotype 
of the syndrome consists of central obesity, adipose 
tissue redistribution (visceral fat accumulation), a 
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Furthermore, treatment with leptin at physiologic 
doses in a subset of HIV-infected, leptin-deficient 
patients improves insulin resistance and truncal fat 
mass and appears to represent a viable therapeutic 
option for this syndrome.73 However, there is still no 
curative treatment for the morphological features 
of lipodystrophy. Interruption of PIs treatment may 
ameliorate dyslipidemia and insulin resistance, but 
not the morphological changes.61 Switching treat-
ment from PIs to other agents (nucleoside reverse 
transcriptase inhibitors, -non-NRTIs-, abacavir), 
has been suggested to improve the morphological 
abnormalities of lipodystrophy syndrome.61 Finally, 
novel protease inhibitors not affecting the ARIRLS-
related pathways are under development (such as 
darunavir that has been shown not to interfere with 
the biosynthesis of lamin A, a key molecule in con-
genital lipodystrophies).74

Viral factors:

There is substantial evidence indicating that AIDS 
patients have tissue-specific glucocorticoid hypersen-
sitivity. The cytokine profile seen in these patients 
(decrease in IL-2, IL-12 and IFN-γ concomitant with 
an increase in IL-4 levels75,76) reflects the reduction 
in innate and adaptive immunity and is also seen in 
situations characterized by significant glucocorticoid 
excess. In addition, muscle wasting and/or myopathy, 
dyslipidemia and visceral obesity-associated insulin 
resistance (either isolated or as part of ARIRLS) are 
frequent complications of HIV infection77-79 and are 
conditions suggestive of a possible chronic hypercor-
tisolemic state. Since HPA axis hyperactivity (a com-
mon finding in HIV-infected patients) seems to be an 
unlikely cause of ARIRLS, it has been hypothesized 
that an increase in glucocorticoid sensitivity might, at 
least partially, explain some of these alterations.80,81

Much attention has been focused on HIV-1-en-
coded accessory proteins Vpr and Tat as possible 
candidates responsible for the noted glucocorticoid hy-
persensitivity. Vpr is a 96-amino acid virion-associated 
accessory protein with multiple functions,82 including 
host cell arrest in the G2/M phase of the cell cycle 
(through interaction with novel 14-3-3 proteins),82-85 
transcription activation of several viral promoters,85 
nuclear translocation, induction of apoptosis86 and 
enhancement of HIV-1 long terminal repeat (LTR) 

promoter (important for the expression of HIV-1 
encoded proteins87) activation by Tat.85 Vpr may also 
exhibit paracrine and endocrine functions in distant 
non-infected tissues.88,89 Vpr increases glucocorticoid 
sensitivity in target tissues. The possible mechanisms 
involving coactivator or corepressor Vpr action are 
described below:

The conserved LXXLL motif sequence located at 
amino acids 64 to 68 of the Vpr molecule is known 
to directly bind to the glucocorticoid receptor (GR) 
and is considered essential in nuclear receptor and 
coactivator molecule interaction.90 This sequence 
is found in several copies of various well-known 
coactivator molecules (p300/CBP and members 
of the p160 family of coactivators).91

Vpr acts as an adaptor molecule among promoter 
bound transcriptional factors and CREB-binding 
protein (CBP), a well-known coactivator mol-
ecule.92

When Vpr was administered experimentally in 
peripheral monocytes, IL-12 production, through 
augmentation of GR activity, was found to be 
markedly decreased.93

Vpr has been shown to directly inhibit peroxisome 
proliferation activating receptor γ (PPAR-γ) action 
which is considered critical for the development 
and proper function of adipose tissue.94

Vpr inhibits insulin induced translocation into the 
cytoplasm and subsequent inactivation of Foxo3a 
(a member of the FOXO family of proteins playing 
an important role in the transactivation of genes 
related to gluconeogenesis and glucolysis).82

Tat is considered the most potent transactivator 
protein of the HIV-1 LTR promoter. Similarly to 
Vpr, it circulates in blood and may affect target cells 
regardless of whether they are infected or not.95 It 
exerts its glucocorticoid-enhancing actions by virtue 
of its direct interaction with coactivator molecules 
(p300/CBP and p160)92 and by helping accumulate the 
positive transcription elongation factor-b (pTEF-b) 
on glucocorticoid-responsive promoters.96

In summary, ARIRLS seems to be the result of 
the effect of various viral factors in conjunction with 
the use of protease inhibitors. Prior to treatment with 

•

•

•

•

•
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these agents, AIDS-related cachexia might mask the 
expression of insulin resistance and lipodystrophy 
phenotype. After treatment initiation, however, the 
significant clinical improvement seen in these patients 
(including weight regain), the direct effect of protease 
inhibitors, along with the persistent Vpr- and Tat-
induced metabolic abnormalities allow the clinical 
manifestations of the typical ARIRLS to become 
apparent (Figure 2).

Conclusions

HPA axis dysfunction is usually encountered in 
HIV-infected patients. The most common dysfunc-
tion in these patients is hypercortisolemia, which is 
also observed in other forms of acute or chronic ill-
nesses and is probably due to elevation of circulating 
cytokines. The release of cytokines, such as IL-1β and 
IL-6, may induce the production of glucocorticoids 
indirectly (via the release of CRH and/or ACTH) 
or directly by stimulating adrenal glucocorticoid 
biosynthesis. However, hypercortisolemia is a more 
common feature of early stage HIV infection. As the 

underlying disease progresses and the patients enter 
a more immunocompromised state, the likelihood of 
adrenal insufficiency gradually increases. Adrenal 
insufficiency is usually the result of opportunistic infec-
tions (mainly CMV) or neoplastic infiltration of the 
adrenals and/or the pituitary. Drugs commonly used 
in AIDS patients may also be a causative or triggering 
factor leading to adrenal insufficiency. When adrenal 
insufficiency is documented, prompt therapy must 
be instituted. However, frank adrenal insufficiency 
is relatively rare. Thus, provocative tests should be 
performed prior to treatment because glucocorticoid 
treatment might be harmful to AIDS patients whose 
immune system is already compromised.

In summary, HIV-1 per se affects the HPA axis 
in several ways. It induces glucocorticoid secretion 
through direct stimulation of the HPA axis by the 
HIV-1 envelope protein gp120. Conversely, it may 
impair adrenal function by direct infection of the 
adrenals. Finally, through the Vpr and Tat, HIV-1-
encoded proteins, the virus may stimulate host target 
tissue glucocorticoid sensitivity in some AIDS patients, 

Figure 2. Possible pathogenetic mechanisms (viral factors and protease inhibitors) leading to AIDS-related lipodystrophy/insulin 
resistance syndrome.82
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resulting in a clinical syndrome with the morphologic 
and biochemical manifestations of glucocorticoid 
excess (AIDS-related insulin resistance and lipodys-
trophy syndrome, -ARIRLS-). The etiology of this 
syndrome, however, seems to be multifactorial. In 
addition to the HIV infection itself, antiviral drugs and 
hypercytokinemia may contribute to the pathologic 
manifestations of ARIRL syndrome.
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