Estradiol and progesterone supplementation during luteal phase improved the receptivity of the endometrium in a patient with a history of diethylstilboestrol exposure in-utero

Dimitris Loutradis,1 Konstantinos Stefanidis,1 Erasmia Kiapekou,2 Evangelia Zapanti,2 Chrisoula Panitsa-Faflia,1 Aristidis Antsaklis1

1First Department of Obstetrics and Gynaecology, Athens University School of Medicine, Alexandra Hospital, 2First Endocrine Section, Alexandra Hospital, Athens, Greece

ABSTRACT
BACKGROUND: Diethylstilboestrol (DES) exposure in-utero has been shown to have negative effects on pregnancy. DES-exposed women are at increased risk of early spontaneous pregnancy loss, ectopic gestation and infertility. DESIGN: A 34-year old woman with a 6-year history of primary infertility is presented. The patient underwent in vitro fertilization (IVF) treatment without success. To improve the quality of the endometrium following IVF treatment, E2 and progesterone supplementation was added to the usual therapeutic regimen. The pregnancy progressed uneventfully and a normal female was born. CONCLUSIONS: This case indicates that the administration of E2 and progesterone in DES-exposed women might improve endometrium receptivity and consequently pregnancy outcome.

Key words: DES, Estradiol, IVF, Progesterone, Implantation

INTRODUCTION
Diethylstilboestrol (DES) exposure in-utero has been shown to have a potentially negative impact on pregnancy. Negative effects include an increased risk of early pregnancy loss,1,2 ectopic gestation3 and infertility.3,5 These women may also present reproductive tract abnormalities leading to pregnancy complications. The most common anomalies include uterine defects such as T-shaped uterus or hypoplastic uterine cavity.6

From the late 1940s until 1971 an estimated 2 to 3 million women were prescribed DES during their pregnancies; thus, approximately 3 million embryos were exposed to the drug in-utero.6

Karande et al. (1990)7 and Noyes et al (1996)8 presented data suggesting that among women undergoing in-vitro fertilization (IVF), in-utero DES-exposed infertile women experienced decreased success when compared with patients with other infertility factors. The authors suggested that the endometrial pattern as well as “uterine receptivity” are important factors for pregnancy success and should
be seriously taken into account.

In the present report we describe an in-utero DES exposed woman enrolled in an IVF program. The protocol that was employed for this case was the protocol used for donor patients in order to improve the receptivity of the endometrium.9

CASE REPORT

A 34-year old woman presented with a 6-year history of primary infertility. Her menstrual cycle was regular (every 26-33 days). She had a history of DES exposure in-utero. A T-shaped uterus and normal ovaries were found by hysterosalpingography (HSG) (Figure 1). Routine biochemical data and pertinent hormonal results were normal. The patient underwent 6 cycles of intra-uterus insemination (IUI) without success and subsequently was enrolled in an IVF program. Firstly the long GnRH protocol was used as follows: On day 21 of the previous cycle, a baseline ultrasound scan was performed. Simultaneously, a GnRH agonist nasal spray was commenced (buserelin, Hoechst, Germany) at a dose of 100 ìg 5 times daily (every 4h, omitting the 3 a.m. dose). On this long protocol, the down-regulation period before FSH administration was 15-24 days. The extent of ovarian suppression was evaluated by ultrasound scan and serum E2 levels (= 40 pg/ml). Subsequently, stimulation was initiated with human recombinant FSH (Puregon, Organon, the Netherlands) at a fixed dose of 200 IU daily. GnRH-agonist administration was continued until human chorionic gonadotropin (hCG) was administered (Pregnyl, Organon, the Netherlands). The latter was given intramuscularly at a dose of 10,000 IU when the mean diameter of at least two leading follicles was > 18 mm and serum E2 was rising. 35-36h after hCG administration, ovum retrieval was performed by transvaginal echo-guided ovarian puncture. The luteal phase was supported with 2500 IU hCG injected on days of ovum retrieval, embryo transfer and day 4 after embryo transfer.

Seven oocytes were collected, 5 of which were fertilized. Esradiol levels on the day of HCG administration were 1867 pg/ml, while the endometrial pattern on the day of retrieval was “solid” according to Noyes criteria.8 The embryo transfer (ET) was performed on day 3 after hCG administration. The embryos transferred were at the 8-cell stage and their quality was “excellent”. The subsequent β-hCG test was negative for pregnancy.

The next cycle was repeated after a 5-month interval. The same protocol for ovulation induction was used. Esradiol levels on the day of hCG administration were 2100 pg/ml and 8 oocytes were retrieved. Unfortunately, the pattern of the endometrium was “solid” again. Thus, the administration of 6 mg/day estradiol per-os and 200ìg/week transdermally was decided upon from the day of ovum pick-up. The day before embryo transfer, progesterone supplementation at 800mg/day divided between 300mg/day per os and 500mg/day vaginally was given. On day 3, three embryos of good quality at 8-cell stage were transferred. The pregnancy test was positive 15 days after ET and ultrasound investigation revealed an intact, intrauterine, singleton pregnancy. The administration of E2 and progesterone were continued until the 28th week of gestation. A normal female baby was delivered at the 37th gestational week by C. Section with a birth weight of 2400gr.

Figure 1. Utero-salpingography showing T-shape uterine cavity, typical of the DES syndrome.
Estradiol and progesterone supplementation during luteal phase improved the receptivity of the endometrium 1 4 9

A beneficial effect on pregnancy and implantation rates.14 The term “uterine receptivity” was introduced first in the animal models and subsequently in humans to denote a window of implantation beyond which egg transfer is unsuccessful and could be a major factor limiting IVF pregnancy rates.15

Although progesterone secretion is considered the main hormonal event during the luteal phase, E2 appears to play a crucial role as well. The pinopodes developing on the apical surface of the luminal uterine epithelium appearing in normal cycles at the peri-implantation period are now used as a morphological marker of endometrium receptivity. The effect of the duration of E2 administration on pregnancy outcome has been evaluated clinically in the study of Nikas et al.16 The authors found that the effectiveness of the regimen was strongly correlated with the duration of the artificial follicular phase, with the best results achieved when the E2 was administered from 6 to 11 days. Progesterone administration was not found to affect the outcome.9

Furthermore, it has been demonstrated that in patients who were treated with the long GnRH-agonist protocol, the addition of E2 and progesterone support regimen had a beneficial effect on pregnancy and implantation rate.11

The use of the protocol described in the present case aimed at targeting the window of implantation, through enhancement of the endometrial receptivity, as well as the improvement of the configuration of “solid” pattern endometrium. The same protocol has also been used in patients enrolled in an oocyte donation program with achievement of a high success rate. In these cases the endometrium pattern is of importance for pregnancy outcome in DES in-utero exposed women undergoing IVF.

Salle et al.10 demonstrated that the endometrial thickness was decreased significantly in in-utero DES-exposed women compared to the non-exposed healthy controls, particularly in the luteal phase. This may reflect insufficient endometrial support for the early conceptus leading to infertility or early spontaneous abortion. This study also documented that the pulsatility index of the uterine arteries in the in-utero DES-exposed group was higher throughout the cycle and failed to undergo a decrease in the luteal phase.

Serum values of E2 and progesterone decline from the midluteal phase in IVF-ET cycles in which pituitary suppression is used for controlled ovarian hyperstimulation. This decline has been found to adversely affect implantation, particularly in patients who are treated with the long GnRH analog protocol for controlled ovarian hyperstimulation.11-13 The addition of E2 and progesterone to this regimen had an explanation for the failure of implantation in in-utero DES-exposed patients was advanced by Bern et al. in 1987.17 Their findings lend support to a Mullerian rather than an endocrine etiology. Moreover, Miller et al.18 and Ma et al.19 presented evidence that antenatal DES exposure disrupts expression of Wnt7a, Hoxa10 and Hoxa11 in the upper Mullerian duct, while other authors in the past had identified various genes as potential candidates for the failure to conceive on one previous attempt of IVF. In both attempts the failure was attributed to the “solid” pattern of the endometrium on the day of retrieval.

Noyes et al.8 compared the pregnancy outcome, as it is related to ultrasound endometrial pattern, in in-utero DES- and non-DES-exposed women and suggested that the ultrasound endometrial pattern is an important variable for pregnancy outcome in in-utero DES-exposed women undergoing IVF. According to Noyes et al., endometrial patterns were assigned as p1= solid, p2= ring, p3= intermediate. In-utero DES-exposed patients showed a solid endometrium pattern more often than in-utero non-DES-exposed women. The same authors reported that no pregnancies resulted after IVF in in-utero DES-exposed patients with “solid” configuration of the endometrium as compared with 36.5% delivery rate in in-utero non-DES-exposed controls. In cycles in which the endometrium pattern of the women was “ring” and “intermediate”, there was no significant difference between DES exposed in-utero and non-exposed individuals with regard to pregnancy rates. Thus, it seems that the endometrium pattern is of importance for pregnancy outcome in DES in-utero exposed women undergoing IVF.

Serum values of E2 and progesterone decline from the midluteal phase in IVF-ET cycles in which pituitary suppression is used for controlled ovarian hyperstimulation. This decline has been found to adversely affect implantation, particularly in patients who are treated with the long GnRH analog protocol for controlled ovarian hyperstimulation.11-13 The addition of E2 and progesterone to this regimen had a beneficial effect on pregnancy and implantation rates.14 The term “uterine receptivity” was introduced first in the animal models and subsequently in humans to denote a window of implantation beyond which egg transfer is unsuccessful and could be a major factor limiting IVF pregnancy rates.15

The use of the protocol described in the present case aimed at targeting the window of implantation, through enhancement of the endometrial receptivity, as well as the improvement of the configuration of “solid” pattern endometrium. The same protocol has also been used in patients enrolled in an oocyte donation program with achievement of a high success rate. In these cases the endometrial receptivity was induced successfully in recipients by employing a constant administration of estradiol valerate and progesterone.9,16

An explanation for the failure of implantation in in-utero DES-exposed patients was advanced by Bern et al. in 1987.17 Their findings lend support to a Mullerian rather than an endocrine etiology. Moreover, Miller et al.18 and Ma et al.19 presented evidence that antenatal DES exposure disrupts expression of Wnt7a, Hoxa10 and Hoxa11 in the upper Mullerian duct, while other authors in the past had identified various genes as potential candidates for the failure to conceive on one previous attempt of IVF. In both attempts the failure was attributed to the “solid” pattern of the endometrium on the day of retrieval.

Noyes et al.8 compared the pregnancy outcome, as it is related to ultrasound endometrial pattern, in in-utero DES- and non-DES-exposed women and suggested that the ultrasound endometrial pattern is an important variable for pregnancy outcome in in-utero DES-exposed women undergoing IVF. According to Noyes et al., endometrial patterns were assigned as p1= solid, p2= ring, p3= intermediate. In-utero DES-exposed patients showed a solid endometrium pattern more often than in-utero non-DES-exposed women. The same authors reported that no pregnancies resulted after IVF in in-utero DES-exposed patients with “solid” configuration of the endometrium as compared with 36.5% delivery rate in in-utero non-DES-exposed controls. In cycles in which the endometrium pattern of the women was “ring” and “intermediate”, there was no significant difference between DES exposed in-utero and non-exposed individuals with regard to pregnancy rates. Thus, it seems that the endometrium pattern is of importance for pregnancy outcome in DES in-utero exposed women undergoing IVF.

Salle et al.10 demonstrated that the endometrial thickness was decreased significantly in in-utero DES-exposed women compared to the non-exposed healthy controls, particularly in the luteal phase. This may reflect insufficient endometrial support for the early conceptus leading to infertility or early spontaneous abortion. This study also documented that the pulsatility index of the uterine arteries in the in-utero DES-exposed group was higher throughout the cycle and failed to undergo a decrease in the luteal phase.

Serum values of E2 and progesterone decline from the midluteal phase in IVF-ET cycles in which pituitary suppression is used for controlled ovarian hyperstimulation. This decline has been found to adversely affect implantation, particularly in patients who are treated with the long GnRH analog protocol for controlled ovarian hyperstimulation.11-13 The addition of E2 and progesterone to this regimen had a beneficial effect on pregnancy and implantation rates.14 The term “uterine receptivity” was introduced first in the animal models and subsequently in humans to denote a window of implantation beyond which egg transfer is unsuccessful and could be a major factor limiting IVF pregnancy rates.15

Although progesterone secretion is considered the main hormonal event during the luteal phase, E2 appears to play a crucial role as well. The pinopodes developing on the apical surface of the luminal uterine epithelium appearing in normal cycles at the peri-implantation period are now used as a morphological marker of endometrium receptivity. The effect of the duration of E2 administration on pregnancy outcome has been evaluated clinically in the study of Nikas et al.16 The authors found that the effectiveness of the regimen was strongly correlated with the duration of the artificial follicular phase, with the best results achieved when the E2 was administered from 6 to 11 days. Progesterone administration was not found to affect the outcome.9

Furthermore, it has been demonstrated that in patients who were treated with the long GnRH-agonist protocol, the addition of E2 and progesterone support regimen had a beneficial effect on pregnancy and implantation rate.11

The use of the protocol described in the present case aimed at targeting the window of implantation, through enhancement of the endometrial receptivity, as well as the improvement of the configuration of “solid” pattern endometrium. The same protocol has also been used in patients enrolled in an oocyte donation program with achievement of a high success rate. In these cases the endometrial receptivity was induced successfully in recipients by employing a constant administration of estradiol valerate and progesterone.9,16

An explanation for the failure of implantation in in-utero DES-exposed patients was advanced by Bern et al. in 1987.17 Their findings lend support to a Mullerian rather than an endocrine etiology. Moreover, Miller et al.18 and Ma et al.19 presented evidence that antenatal DES exposure disrupts expression of Wnt7a, Hoxa10 and Hoxa11 in the upper Mullerian duct, while other authors in the past had identified various genes as potential candidates for the failure to conceive on one previous attempt of IVF. In both attempts the failure was attributed to the “solid” pattern of the endometrium on the day of retrieval.
of DES-induced abnormalities in the female reproductive tract.

The present case report suggests the potential of improvement of endometrial receptivity in in-utero DES-exposed women by estradiol and progesterone supplementation. Further studies are needed to confirm its effectiveness and define the requirements of E2 and progesterone supplementation for improvement of the pregnancy rates in these women.

Although the favorable outcome in our patient may represent a chance association we consider the case worth reporting. The accumulation of more data will verify or disprove the effectiveness of the proposed therapeutic regimen in in-utero DES exposed women.

REFERENCES