metabolic/CVD outcomes. The initially supported statistically relationships were weakened for BMI (6.85, p = 0.006), waist-to-hip ratio (0.053, p = 0.044), and HbA1c (0.31, p = 0.042) and just marginally important for log (HOMA-IR) (0.37, p = 0.100).

We additionally constructed fully adjusted and parsimonious models to examine any additional relationships between the selected variables and ethnicity. Only the BMI showed any significant difference across ethnicities, with African Americans showing an estimated 3.13 kg/m² higher BMI after adjusting for age, log (HOMA-IR), fructosamine, and HbA1c. Waist-to-hip ratio, log (HOMA-IR), and HbA1c outcomes, which statistically supported differences in age and BclI adjusted models between CC and CG ethnic genotypes, have ceased to support these substantial changes after adjustment made in full and parsimonious models. The adjustments in the parsimonious regression model for the aforementioned three outcomes were: BMI and hyperlipidemia for waist-to-hip ratio; fructosamine and HbA1c for log (HOMA-IR); BMI, log (HOMA-IR), and fructosamine for HbA1c. These variables have contributed significantly to the variance of these three outcomes. Full model and complete parsimonious model estimates are available from the authors on request.

As an additional part to our research project we investigated the effects of the C and G allele on metabolic/CVD outcomes within AA group. In Table 4, we have presented the results of our analyses for group 2 AA.

Our 23 AA females were analyzed for the prevalence of the BclI polymorphism. Allele and genotype frequencies of the BclI polymorphism in the GR gene identified in our AA group are displayed in Table 2. We found 13 homozygous CC (57%), 9 heterozygous CG (39%), and one homozygous GG.