and 0.17±0.28 mmol/L in the obese category. Table 4 shows the distribution of ketonuria measurements in relation to pre-pregnancy BMI.

It is of note that 37.6% of the participants did not comply with the instruction to have the bedtime snack. The omission of the bedtime snack was associated with significantly increased mean levels of 3HB (0.23±0.03 mmol/L vs 0.16±0.02 mmol/L, p=0.035). Insulin therapy was added in order to achieve good glucose control in 74/180 (41.1%) women. The use of insulin administration was associated with significantly lower levels of 3HB (0.15±0.02 mmol/L vs 0.22±0.03 mmol/L, p=0.032). Further, Table 5 shows the distribution of ketonemia measurements regarding increase/decrease in weight between two consecutive visits and in the same manner Table 6 shows the distribution of ketonuria measurements. Weight loss per week, between two consecutive visits, was associated with significantly higher mean levels of 3HB compared to weight gain per week (0.23±0.05 mmol/L vs 0.10±0.02 mmol/L, p=0.005). A positive Pearson’s correlation was observed between mother’s age and 3HB levels (r=0.16, p=0.002). No statistically significant associations were found between levels of 3HB and BMI before pregnancy (r=0.006, p=0.910).